#import gradio as gr | |
#gr.Interface.load("models/pyannote/speaker-diarization").launch() | |
from fastapi import FastAPI, UploadFile | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.responses import FileResponse | |
#from pyannote.audio import Pipeline | |
from transformers import pipeline # le framework de huggingface | |
#from datasets import load_dataset, Audio # ça c'est pour entrainer mon modele | |
app = FastAPI() | |
#pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small") | |
#deepneurones = pipeline("automatic-speech-recognition")# la liste des pipelines de huggingface est disponible ici :https://huggingface.co/docs/transformers/quicktour. pipeline() telecharge dans un cache local le modele deeplearning | |
deepneurones= pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") | |
def healthcheck(): | |
#output = pipe_flan(input) | |
#pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization") | |
#pipeline("file.wav") | |
return {"output":"OK"} | |
async def stt(file: str = UploadFile(...)): | |
#file_content = base64.b64decode(file) | |
file_content = await file.read() | |
#dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") | |
results = deepneurones(file_content) | |
return {"output":results} | |
#app.mount("/", StaticFiles(directory="static", html=True), name="static") | |
def index() -> FileResponse: | |
return FileResponse(path="/home/user/app/index.html", media_type="text/html") | |