#import gradio as gr #gr.Interface.load("models/pyannote/speaker-diarization").launch() from fastapi import FastAPI, UploadFile from fastapi.staticfiles import StaticFiles from fastapi.responses import FileResponse #from pyannote.audio import Pipeline from transformers import pipeline # le framework de huggingface #from datasets import load_dataset, Audio # ça c'est pour entrainer mon modele app = FastAPI() #pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small") #deepneurones = pipeline("automatic-speech-recognition")# la liste des pipelines de huggingface est disponible ici :https://huggingface.co/docs/transformers/quicktour. pipeline() telecharge dans un cache local le modele deeplearning deepneurones= pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") @app.get("/healthcheck") def healthcheck(): #output = pipe_flan(input) #pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization") #pipeline("file.wav") return {"output":"OK"} @app.post("/stt") async def stt(file: str = UploadFile(...)): #file_content = base64.b64decode(file) file_content = await file.read() #dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") results = deepneurones(file_content) return {"output":results} #app.mount("/", StaticFiles(directory="static", html=True), name="static") @app.get("/") def index() -> FileResponse: return FileResponse(path="/home/user/app/index.html", media_type="text/html")