Spaces:
Build error
Build error
File size: 19,540 Bytes
fb105a4 699acbf fb105a4 b126c55 fb105a4 699acbf fb105a4 699acbf fb105a4 699acbf fb105a4 699acbf fb105a4 699acbf fb105a4 699acbf fb105a4 699acbf fb105a4 699acbf fb105a4 699acbf fb105a4 699acbf fb105a4 699acbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import math
import dlib
import tempfile
import requests
import os
from transformers import pipeline
import cv2
import io
import json
import re
import time
detector = dlib.get_frontal_face_detector()
try:
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
except RuntimeError:
print("Downloading shape_predictor_68_face_landmarks.dat...")
landmarks_url = "http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2"
landmarks_compressed = requests.get(landmarks_url).content
import bz2
landmarks_data = bz2.decompress(landmarks_compressed)
with open("shape_predictor_68_face_landmarks.dat", "wb") as f:
f.write(landmarks_data)
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
IMAGE_GEN_API = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
HF_TOKEN = os.getenv("HF_TOKEN")
LLM_API = "https://api-inference.huggingface.co/models/lmsys/fastchat-t5-3b-v1.0"
def query_hf_image_generation(prompt):
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
payload = {"inputs": prompt}
for _ in range(3):
try:
response = requests.post(IMAGE_GEN_API, headers=headers, json=payload)
response.raise_for_status()
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
return image
except requests.exceptions.RequestException as e:
print(f"Image generation attempt failed: {e}")
time.sleep(2)
raise Exception("Image generation failed after multiple attempts")
def query_llm(prompt, system_prompt):
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
prompt_template = f"<|system|>\n{system_prompt}</s>\n<|user|>\n{prompt}</s>\n<|assistant|>\n"
payload = {"inputs": prompt_template, "max_new_tokens": 200}
for _ in range(3):
try:
response = requests.post(LLM_API, headers=headers, json=payload)
response.raise_for_status()
return response.json()[0]['generated_text']
except requests.exceptions.RequestException as e:
print(f"LLM query attempt failed: {e}")
time.sleep(2)
raise Exception("LLM query failed after multiple attempts")
def segment_script(script):
system_prompt = "You are a helpful assistant. Given a script, divide it into segments suitable for generating images, ensuring each segment is less than 500 characters."
llm_response = query_llm(script, system_prompt)
segments = llm_response.split('\n')
segments = [seg.strip() for seg in segments if seg.strip()]
return segments
def generate_image_prompts(script_segments):
image_prompts = []
for segment in script_segments:
system_prompt = "You are a helpful assistant. Create a concise image prompt based on the following script segment:"
prompt = f"Script Segment: {segment}"
image_prompt = query_llm(prompt, system_prompt)
image_prompts.append(image_prompt)
return image_prompts
def extract_motion_params(llm_output):
try:
start_index = llm_output.find('{')
end_index = llm_output.rfind('}') + 1
json_string = llm_output[start_index:end_index]
params = json.loads(json_string)
return params
except:
return {
"motion_type": "none",
"intensity": 0.25,
"text_overlay": "",
"text_color": "white",
"start_time": 0,
"end_time": 5
}
def detect_face_landmarks(image):
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
rects = detector(gray, 1)
if len(rects) > 0:
shape = predictor(gray, rects[0])
shape = np.array([(shape.part(i).x, shape.part(i).y) for i in range(68)])
return shape
else:
return None
def apply_color_grading(frame, color_preset, intensity):
if color_preset == "sepia":
sepia_matrix = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
frame_float = frame.astype(np.float32) / 255.0
sepia_effect = cv2.transform(frame_float, sepia_matrix)
blended_frame = (1 - intensity) * frame_float + intensity * sepia_effect
return (np.clip(blended_frame, 0, 1) * 255).astype(np.uint8)
elif color_preset == "vintage":
frame_float = frame.astype(np.float32) / 255.0
frame_float[:, :, 0] *= (1 - intensity * 0.6)
frame_float[:, :, 2] *= (1 + intensity * 0.3)
grayscale = cv2.cvtColor(frame_float, cv2.COLOR_RGB2GRAY)
grayscale_rgb = cv2.cvtColor(grayscale, cv2.COLOR_GRAY2RGB)
blended_frame = (1 - intensity * 0.5) * frame_float + intensity * 0.5 * grayscale_rgb
return (np.clip(blended_frame, 0, 1) * 255).astype(np.uint8)
elif color_preset == "black_and_white":
gray_frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
return cv2.cvtColor(gray_frame, cv2.COLOR_GRAY2RGB)
elif color_preset == "cold":
frame_float = frame.astype(np.float32) / 255.0
frame_float[:, :, 0] *= (1 + intensity * 0.7)
frame_float[:, :, 2] *= (1 - intensity * 0.2)
return (np.clip(frame_float, 0, 1) * 255).astype(np.uint8)
elif color_preset == "warm":
frame_float = frame.astype(np.float32) / 255.0
frame_float[:, :, 2] *= (1 + intensity * 0.7)
frame_float[:, :, 0] *= (1 - intensity * 0.2)
return (np.clip(frame_float, 0, 1) * 255).astype(np.uint8)
elif color_preset == "neon":
frame_float = frame.astype(np.float32) / 255.0
lab = cv2.cvtColor(frame_float, cv2.COLOR_RGB2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
l = clahe.apply(l)
lab = cv2.merge((l, a, b))
frame_float = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
frame_float[:, :, 0] *= (1 - intensity * 0.4)
frame_float[:, :, 1] *= (1 + intensity * 0.8)
frame_float[:, :, 2] *= (1 - intensity * 0.4)
return (np.clip(frame_float, 0, 1) * 255).astype(np.uint8)
return frame
def apply_vignette(frame, intensity):
width, height = frame.shape[1], frame.shape[0]
x = np.linspace(-1, 1, width)
y = np.linspace(-1, 1, height)
X, Y = np.meshgrid(x, y)
radius = np.sqrt(X**2 + Y**2)
vignette = 1 - intensity * radius**2
vignette = np.clip(vignette, 0, 1)
vignette = np.stack([vignette] * 3, axis=-1)
frame_float = frame.astype(np.float32) / 255.0
result = frame_float * vignette
return (np.clip(result, 0, 1) * 255).astype(np.uint8)
def apply_bokeh(frame, intensity, t):
frame_float = frame.astype(np.float32) / 255.0
gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
circles = []
for _ in range(int(intensity * 30)):
radius = np.random.randint(5, 30)
x = np.random.randint(radius, frame.shape[1] - radius)
y = np.random.randint(radius, frame.shape[0] - radius)
color = frame_float[y, x]
brightness = np.random.uniform(0.5, 1.0)
circles.append((x, y, radius, color, brightness))
bokeh_effect = np.zeros_like(frame_float)
for x, y, radius, color, brightness in circles:
y_grid, x_grid = np.ogrid[-y:frame.shape[0]-y, -x:frame.shape[1]-x]
mask = x_grid*x_grid + y_grid*y_grid <= radius*radius
bokeh_effect[mask] += np.array(color) * brightness * (0.5 + 0.5 * np.sin(t * 2 * math.pi))
blended_frame = frame_float + intensity * bokeh_effect
return (np.clip(blended_frame, 0, 1) * 255).astype(np.uint8)
def apply_advanced_motion(image, motion_type, intensity, duration, fps, text_overlay, text_color, font_size, start_time, end_time, color_preset, vignette_intensity):
frames = []
width, height = image.size
landmarks = detect_face_landmarks(image)
for i in range(int(duration * fps)):
t = i / (duration * fps)
frame = image.copy()
if landmarks is not None:
if motion_type == "head_nod":
top_head = landmarks[27]
bottom_head = landmarks[8]
angle = math.sin(t * 2 * math.pi) * intensity * 8
center_x = (top_head[0] + bottom_head[0]) // 2
center_y = (top_head[1] + bottom_head[1]) // 2
M = cv2.getRotationMatrix2D((center_x, center_y), angle, 1)
rotated_image = cv2.warpAffine(np.array(image), M, (width, height), flags=cv2.INTER_LANCZOS4)
frame = Image.fromarray(rotated_image)
elif motion_type == "head_shake":
top_head = landmarks[27]
left_head = landmarks[0]
right_head = landmarks[16]
angle = math.sin(t * 3 * math.pi) * intensity * 6
center_x = top_head[0]
center_y = top_head[1]
M = cv2.getRotationMatrix2D((center_x, center_y), angle, 1)
rotated_image = cv2.warpAffine(np.array(image), M, (width, height), flags=cv2.INTER_LANCZOS4)
frame = Image.fromarray(rotated_image)
elif motion_type == "eye_blink":
left_eye_top = landmarks[37]
left_eye_bottom = landmarks[41]
right_eye_top = landmarks[43]
right_eye_bottom = landmarks[47]
blink_progress = abs(math.sin(t * 2 * math.pi))
if blink_progress > 0.9:
draw = ImageDraw.Draw(frame)
draw.line([tuple(landmarks[36]), tuple(landmarks[39])], fill=text_color, width=2)
draw.line([tuple(landmarks[42]), tuple(landmarks[45])], fill=text_color, width=2)
else:
frame = image.copy()
elif motion_type == "smile":
mouth_left = landmarks[48]
mouth_right = landmarks[54]
mouth_top = landmarks[51]
mouth_bottom = landmarks[57]
smile_progress = intensity * t
draw = ImageDraw.Draw(frame)
curve_points = [
tuple(mouth_left),
(mouth_left[0] + (mouth_right[0] - mouth_left[0]) // 4, mouth_left[1] + int(20 * smile_progress)),
(mouth_left[0] + 3 * (mouth_right[0] - mouth_left[0]) // 4, mouth_right[1] + int(20 * smile_progress)),
tuple(mouth_right)
]
draw.line(curve_points, fill=text_color, width=4)
if motion_type == "zoom":
scale = 1 + intensity * t
new_size = (int(width * scale), int(height * scale))
resized_image = image.resize(new_size, Image.Resampling.LANCZOS)
x_offset = (new_size[0] - width) // 2
y_offset = (new_size[1] - height) // 2
frame = resized_image.crop((x_offset, y_offset, x_offset + width, y_offset + height))
elif motion_type == "pan":
x_offset = int(intensity * t * (width - width))
y_offset = int(intensity * t * (height - height))
frame = Image.new("RGB", (width, height))
frame.paste(image, (-x_offset, -y_offset))
elif motion_type == "rotate":
angle = intensity * t * 360
rotated_image = image.rotate(angle, expand=True, resample=Image.Resampling.BICUBIC)
x_offset = (rotated_image.width - width) // 2
y_offset = (rotated_image.height - height) // 2
frame = Image.new("RGB", (width, height))
frame.paste(rotated_image, (-x_offset, -y_offset))
elif motion_type == "move_right":
x_offset = int(intensity * t * width)
frame = Image.new("RGB", (width, height), "black")
frame.paste(image, (x_offset, 0))
elif motion_type == "move_left":
x_offset = -int(intensity * t * width)
frame = Image.new("RGB", (width, height), "black")
frame.paste(image, (x_offset, 0))
elif motion_type == "move_up":
y_offset = -int(intensity * t * height)
frame = Image.new("RGB", (width, height), "black")
frame.paste(image, (0, y_offset))
elif motion_type == "move_down":
y_offset = int(intensity * t * height)
frame = Image.new("RGB", (width, height), "black")
frame.paste(image, (0, y_offset))
elif motion_type == "shake":
shake_intensity = intensity * 10
x_offset = int(shake_intensity * math.sin(t * 2 * math.pi * 5))
y_offset = int(shake_intensity * math.cos(t * 2 * math.pi * 3))
frame = Image.new("RGB", (width, height))
frame.paste(image, (x_offset, y_offset))
elif motion_type == "fade_in":
alpha = t
frame = Image.blend(Image.new("RGB", (width, height), "black"), image, alpha)
elif motion_type == "fade_out":
alpha = 1 - t
frame = Image.blend(Image.new("RGB", (width, height), "black"), image, alpha)
elif motion_type == "rain":
draw = ImageDraw.Draw(frame)
for _ in range(int(intensity * 5)):
x = np.random.randint(0, width)
y = np.random.randint(0, height)
length = np.random.randint(5, 15)
speed = intensity * 3
y_end = y + length + i * speed
draw.line([(x, y), (x, y_end)], fill="lightblue", width=1)
elif motion_type == "bokeh":
frame_np = np.array(frame)
frame_np = apply_bokeh(frame_np, intensity, t)
frame = Image.fromarray(frame_np)
frame_np = np.array(frame)
if color_preset:
frame_np = apply_color_grading(frame_np, color_preset, intensity)
if vignette_intensity > 0:
frame_np = apply_vignette(frame_np, vignette_intensity)
frame = Image.fromarray(frame_np)
draw = ImageDraw.Draw(frame)
if text_overlay and start_time <= t <= end_time:
try:
font = ImageFont.truetype("arial.ttf", font_size)
except IOError:
font = ImageFont.load_default()
text_width, text_height = draw.textsize(text_overlay, font=font)
x = (width - text_width) // 2
y = (height - text_height) // 2
draw.text((x, y), text_overlay, font=font, fill=text_color)
frames.append(np.array(frame))
return frames
def create_video_from_frames(frames, output_filename, fps=30):
writer = imageio_ffmpeg.write_frames(output_filename, frames[0].shape[:2], pix_fmt_out='yuv420p', fps=fps, codec='libx264', preset="veryslow")
writer.send(None)
for frame in frames:
writer.send(frame)
writer.close()
def generate_video_from_script(script, duration_per_segment=5):
script_segments = segment_script(script)
image_prompts = generate_image_prompts(script_segments)
all_frames = []
for i, (segment, image_prompt) in enumerate(zip(script_segments, image_prompts)):
print(f"Processing segment {i + 1} of {len(script_segments)}")
print(f" Segment: {segment}")
print(f" Image Prompt: {image_prompt}")
image = query_hf_image_generation(image_prompt)
image_description = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")(image)[0]['generated_text']
system_prompt = "You are an expert in image to video creation. Provide the motion type, intensity, text overlay, text color, text start and end times, color preset, and vignette intensity for the following image description and user prompt. Give the response in a JSON format."
prompt = f"Image Description: {image_description}\nUser Prompt: {segment}"
llm_response = query_llm(prompt, system_prompt)
print(f" LLM Response: {llm_response}")
motion_params = extract_motion_params(llm_response)
print(f" Motion Parameters: {motion_params}")
frames = apply_advanced_motion(
image,
motion_params["motion_type"],
motion_params["intensity"],
duration=duration_per_segment,
fps=30,
text_overlay=motion_params["text_overlay"],
text_color=motion_params["text_color"],
font_size=50,
start_time=motion_params["start_time"],
end_time=motion_params["end_time"],
color_preset=motion_params.get("color_preset", None),
vignette_intensity=motion_params.get("vignette_intensity", 0)
)
all_frames.extend(frames)
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
output_filename = tmpfile.name
create_video_from_frames(all_frames, output_filename)
return output_filename
def generate_and_animate(prompt):
try:
image = query_hf_image_generation(prompt)
image_description = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")(image)[0]['generated_text']
llm_response = query_llm(prompt, image_description)
motion_params = extract_motion_params(llm_response)
frames = apply_advanced_motion(
image,
motion_params["motion_type"],
motion_params["intensity"],
duration=5,
fps=30,
text_overlay=motion_params["text_overlay"],
text_color=motion_params["text_color"],
font_size=50,
start_time=motion_params["start_time"],
end_time=motion_params["end_time"],
color_preset=motion_params.get("color_preset", None),
vignette_intensity=motion_params.get("vignette_intensity", 0)
)
video_file = create_video_from_frames(frames)
return video_file, gr.Image.update(value=image)
except Exception as e:
return str(e), None
motion_types = [
"zoom", "pan", "rotate", "move_right", "move_left", "move_up", "move_down",
"shake", "fade_in", "fade_out", "head_nod", "head_shake", "eye_blink", "smile", "rain", "bokeh", "none"
]
text_colors = ["white", "black", "red", "green", "blue", "yellow"]
color_presets = ["sepia", "vintage", "black_and_white", "cold", "warm", "neon", "none"]
iface = gr.Interface(
fn=generate_and_animate,
inputs=[
gr.Textbox(label="Prompt"),
],
outputs=[
gr.Video(label="Generated Video"),
gr.Image(label="Generated Image")
],
title="AI Video Generator",
description="Enter a prompt to generate an image and animate it. Uses Flux 1, an LLM, and advanced video processing techniques."
)
video_iface = gr.Interface(
fn=generate_video_from_script,
inputs=[
gr.Textbox(label="Script (max 1 minute video)", lines=5),
gr.Slider(label="Duration per Segment (seconds)", minimum=1, maximum=10, step=1, value=5)
],
outputs=gr.Video(label="Generated Video from Script"),
title="Story Visualizer",
description="Enter a short story script, and this will generate a video visualizing it using multiple images and animations."
)
demo = gr.TabbedInterface([iface, video_iface], ["Generate and Animate", "Story to Video"])
if __name__ == "__main__":
demo.launch(share=True, debug=True) |