Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import imageio_ffmpeg
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image, ImageDraw, ImageFont
|
5 |
+
import math
|
6 |
+
import dlib
|
7 |
+
import tempfile
|
8 |
+
import requests
|
9 |
+
import os
|
10 |
+
from transformers import pipeline
|
11 |
+
import cv2
|
12 |
+
import io
|
13 |
+
|
14 |
+
detector = dlib.get_frontal_face_detector()
|
15 |
+
try:
|
16 |
+
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
|
17 |
+
except RuntimeError:
|
18 |
+
print("Downloading shape_predictor_68_face_landmarks.dat...")
|
19 |
+
landmarks_url = "http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2"
|
20 |
+
landmarks_compressed = requests.get(landmarks_url).content
|
21 |
+
import bz2
|
22 |
+
landmarks_data = bz2.decompress(landmarks_compressed)
|
23 |
+
with open("shape_predictor_68_face_landmarks.dat", "wb") as f:
|
24 |
+
f.write(landmarks_data)
|
25 |
+
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
|
26 |
+
|
27 |
+
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/flux-1-schnell"
|
28 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
29 |
+
|
30 |
+
LLM_API_URL = "https://api-inference.huggingface.co/models/lmsys/fastchat-t5-3b-v1.0"
|
31 |
+
|
32 |
+
def query_hf_image_generation(prompt):
|
33 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
34 |
+
payload = {"inputs": prompt}
|
35 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
36 |
+
if response.status_code == 200:
|
37 |
+
image_bytes = response.content
|
38 |
+
image = Image.open(io.BytesIO(image_bytes))
|
39 |
+
return image
|
40 |
+
else:
|
41 |
+
raise Exception(f"Image generation failed: {response.content}")
|
42 |
+
|
43 |
+
def query_llm(prompt, image_description):
|
44 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
45 |
+
system_prompt = "You are an expert in image to video creation, and give only the motion type, intensity, text overlay, text color, text start and end times for the image described below based on user's prompt. Give the response in a JSON format."
|
46 |
+
prompt_template = f"<|system|>\n{system_prompt}</s>\n<|user|>\nImage Description: {image_description}\nUser Prompt: {prompt}</s>\n<|assistant|>\n"
|
47 |
+
payload = {"inputs": prompt_template, "max_new_tokens": 200}
|
48 |
+
response = requests.post(LLM_API_URL, headers=headers, json=payload)
|
49 |
+
if response.status_code == 200:
|
50 |
+
return response.json()[0]['generated_text']
|
51 |
+
else:
|
52 |
+
raise Exception(f"LLM query failed: {response.content}")
|
53 |
+
|
54 |
+
def extract_motion_params(llm_output):
|
55 |
+
try:
|
56 |
+
import json
|
57 |
+
start_index = llm_output.find('{')
|
58 |
+
end_index = llm_output.rfind('}') + 1
|
59 |
+
json_string = llm_output[start_index:end_index]
|
60 |
+
params = json.loads(json_string)
|
61 |
+
return params
|
62 |
+
except:
|
63 |
+
return {
|
64 |
+
"motion_type": "none",
|
65 |
+
"intensity": 0.25,
|
66 |
+
"text_overlay": "",
|
67 |
+
"text_color": "white",
|
68 |
+
"start_time": 0,
|
69 |
+
"end_time": 5
|
70 |
+
}
|
71 |
+
|
72 |
+
def detect_face_landmarks(image):
|
73 |
+
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
74 |
+
rects = detector(gray, 1)
|
75 |
+
if len(rects) > 0:
|
76 |
+
shape = predictor(gray, rects[0])
|
77 |
+
shape = np.array([(shape.part(i).x, shape.part(i).y) for i in range(68)])
|
78 |
+
return shape
|
79 |
+
else:
|
80 |
+
return None
|
81 |
+
|
82 |
+
def apply_color_grading(frame, color_preset, intensity):
|
83 |
+
if color_preset == "sepia":
|
84 |
+
sepia_matrix = np.array([[0.393, 0.769, 0.189],
|
85 |
+
[0.349, 0.686, 0.168],
|
86 |
+
[0.272, 0.534, 0.131]])
|
87 |
+
frame_float = frame.astype(np.float32) / 255.0
|
88 |
+
sepia_effect = cv2.transform(frame_float, sepia_matrix)
|
89 |
+
blended_frame = (1 - intensity) * frame_float + intensity * sepia_effect
|
90 |
+
return (np.clip(blended_frame, 0, 1) * 255).astype(np.uint8)
|
91 |
+
elif color_preset == "vintage":
|
92 |
+
frame_float = frame.astype(np.float32) / 255.0
|
93 |
+
frame_float[:, :, 0] *= (1 - intensity * 0.6)
|
94 |
+
frame_float[:, :, 2] *= (1 + intensity * 0.3)
|
95 |
+
grayscale = cv2.cvtColor(frame_float, cv2.COLOR_RGB2GRAY)
|
96 |
+
grayscale_rgb = cv2.cvtColor(grayscale, cv2.COLOR_GRAY2RGB)
|
97 |
+
blended_frame = (1 - intensity * 0.5) * frame_float + intensity * 0.5 * grayscale_rgb
|
98 |
+
return (np.clip(blended_frame, 0, 1) * 255).astype(np.uint8)
|
99 |
+
elif color_preset == "black_and_white":
|
100 |
+
gray_frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
101 |
+
return cv2.cvtColor(gray_frame, cv2.COLOR_GRAY2RGB)
|
102 |
+
elif color_preset == "cold":
|
103 |
+
frame_float = frame.astype(np.float32) / 255.0
|
104 |
+
frame_float[:, :, 0] *= (1 + intensity * 0.7)
|
105 |
+
frame_float[:, :, 2] *= (1 - intensity * 0.2)
|
106 |
+
return (np.clip(frame_float, 0, 1) * 255).astype(np.uint8)
|
107 |
+
elif color_preset == "warm":
|
108 |
+
frame_float = frame.astype(np.float32) / 255.0
|
109 |
+
frame_float[:, :, 2] *= (1 + intensity * 0.7)
|
110 |
+
frame_float[:, :, 0] *= (1 - intensity * 0.2)
|
111 |
+
return (np.clip(frame_float, 0, 1) * 255).astype(np.uint8)
|
112 |
+
elif color_preset == "neon":
|
113 |
+
frame_float = frame.astype(np.float32) / 255.0
|
114 |
+
lab = cv2.cvtColor(frame_float, cv2.COLOR_RGB2LAB)
|
115 |
+
l, a, b = cv2.split(lab)
|
116 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
117 |
+
l = clahe.apply(l)
|
118 |
+
lab = cv2.merge((l, a, b))
|
119 |
+
frame_float = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
|
120 |
+
frame_float[:, :, 0] *= (1 - intensity * 0.4)
|
121 |
+
frame_float[:, :, 1] *= (1 + intensity * 0.8)
|
122 |
+
frame_float[:, :, 2] *= (1 - intensity * 0.4)
|
123 |
+
return (np.clip(frame_float, 0, 1) * 255).astype(np.uint8)
|
124 |
+
|
125 |
+
return frame
|
126 |
+
|
127 |
+
def apply_vignette(frame, intensity):
|
128 |
+
width, height = frame.shape[1], frame.shape[0]
|
129 |
+
x = np.linspace(-1, 1, width)
|
130 |
+
y = np.linspace(-1, 1, height)
|
131 |
+
X, Y = np.meshgrid(x, y)
|
132 |
+
radius = np.sqrt(X**2 + Y**2)
|
133 |
+
vignette = 1 - intensity * radius**2
|
134 |
+
vignette = np.clip(vignette, 0, 1)
|
135 |
+
vignette = np.stack([vignette] * 3, axis=-1)
|
136 |
+
frame_float = frame.astype(np.float32) / 255.0
|
137 |
+
result = frame_float * vignette
|
138 |
+
return (np.clip(result, 0, 1) * 255).astype(np.uint8)
|
139 |
+
|
140 |
+
def apply_bokeh(frame, intensity, t):
|
141 |
+
frame_float = frame.astype(np.float32) / 255.0
|
142 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
143 |
+
circles = []
|
144 |
+
for _ in range(int(intensity * 30)):
|
145 |
+
radius = np.random.randint(5, 30)
|
146 |
+
x = np.random.randint(radius, frame.shape[1] - radius)
|
147 |
+
y = np.random.randint(radius, frame.shape[0] - radius)
|
148 |
+
color = frame_float[y, x]
|
149 |
+
brightness = np.random.uniform(0.5, 1.0)
|
150 |
+
circles.append((x, y, radius, color, brightness))
|
151 |
+
|
152 |
+
bokeh_effect = np.zeros_like(frame_float)
|
153 |
+
for x, y, radius, color, brightness in circles:
|
154 |
+
y_grid, x_grid = np.ogrid[-y:frame.shape[0]-y, -x:frame.shape[1]-x]
|
155 |
+
mask = x_grid*x_grid + y_grid*y_grid <= radius*radius
|
156 |
+
bokeh_effect[mask] += np.array(color) * brightness * (0.5 + 0.5 * np.sin(t * 2 * math.pi))
|
157 |
+
|
158 |
+
blended_frame = frame_float + intensity * bokeh_effect
|
159 |
+
return (np.clip(blended_frame, 0, 1) * 255).astype(np.uint8)
|
160 |
+
|
161 |
+
def apply_advanced_motion(image, motion_type, intensity, duration, fps, text_overlay, text_color, font_size, start_time, end_time, color_preset, vignette_intensity):
|
162 |
+
frames = []
|
163 |
+
width, height = image.size
|
164 |
+
landmarks = detect_face_landmarks(image)
|
165 |
+
|
166 |
+
for i in range(int(duration * fps)):
|
167 |
+
t = i / (duration * fps)
|
168 |
+
frame = image.copy()
|
169 |
+
|
170 |
+
if landmarks is not None:
|
171 |
+
if motion_type == "head_nod":
|
172 |
+
top_head = landmarks[27]
|
173 |
+
bottom_head = landmarks[8]
|
174 |
+
angle = math.sin(t * 2 * math.pi) * intensity * 8
|
175 |
+
center_x = (top_head[0] + bottom_head[0]) // 2
|
176 |
+
center_y = (top_head[1] + bottom_head[1]) // 2
|
177 |
+
M = cv2.getRotationMatrix2D((center_x, center_y), angle, 1)
|
178 |
+
rotated_image = cv2.warpAffine(np.array(image), M, (width, height), flags=cv2.INTER_LANCZOS4)
|
179 |
+
frame = Image.fromarray(rotated_image)
|
180 |
+
|
181 |
+
elif motion_type == "head_shake":
|
182 |
+
top_head = landmarks[27]
|
183 |
+
left_head = landmarks[0]
|
184 |
+
right_head = landmarks[16]
|
185 |
+
angle = math.sin(t * 3 * math.pi) * intensity * 6
|
186 |
+
center_x = top_head[0]
|
187 |
+
center_y = top_head[1]
|
188 |
+
M = cv2.getRotationMatrix2D((center_x, center_y), angle, 1)
|
189 |
+
rotated_image = cv2.warpAffine(np.array(image), M, (width, height), flags=cv2.INTER_LANCZOS4)
|
190 |
+
frame = Image.fromarray(rotated_image)
|
191 |
+
|
192 |
+
elif motion_type == "eye_blink":
|
193 |
+
left_eye_top = landmarks[37]
|
194 |
+
left_eye_bottom = landmarks[41]
|
195 |
+
right_eye_top = landmarks[43]
|
196 |
+
right_eye_bottom = landmarks[47]
|
197 |
+
blink_progress = abs(math.sin(t * 2 * math.pi))
|
198 |
+
if blink_progress > 0.9:
|
199 |
+
draw = ImageDraw.Draw(frame)
|
200 |
+
draw.line([tuple(landmarks[36]), tuple(landmarks[39])], fill=text_color, width=2)
|
201 |
+
draw.line([tuple(landmarks[42]), tuple(landmarks[45])], fill=text_color, width=2)
|
202 |
+
else:
|
203 |
+
frame = image.copy()
|
204 |
+
|
205 |
+
elif motion_type == "smile":
|
206 |
+
mouth_left = landmarks[48]
|
207 |
+
mouth_right = landmarks[54]
|
208 |
+
mouth_top = landmarks[51]
|
209 |
+
mouth_bottom = landmarks[57]
|
210 |
+
smile_progress = intensity * t
|
211 |
+
|
212 |
+
draw = ImageDraw.Draw(frame)
|
213 |
+
curve_points = [
|
214 |
+
tuple(mouth_left),
|
215 |
+
(mouth_left[0] + (mouth_right[0] - mouth_left[0]) // 4, mouth_left[1] + int(20 * smile_progress)),
|
216 |
+
(mouth_left[0] + 3 * (mouth_right[0] - mouth_left[0]) // 4, mouth_right[1] + int(20 * smile_progress)),
|
217 |
+
tuple(mouth_right)
|
218 |
+
]
|
219 |
+
draw.line(curve_points, fill=text_color, width=4)
|
220 |
+
|
221 |
+
if motion_type == "zoom":
|
222 |
+
scale = 1 + intensity * t
|
223 |
+
new_size = (int(width * scale), int(height * scale))
|
224 |
+
resized_image = image.resize(new_size, Image.Resampling.LANCZOS)
|
225 |
+
x_offset = (new_size[0] - width) // 2
|
226 |
+
y_offset = (new_size[1] - height) // 2
|
227 |
+
frame = resized_image.crop((x_offset, y_offset, x_offset + width, y_offset + height))
|
228 |
+
|
229 |
+
elif motion_type == "pan":
|
230 |
+
x_offset = int(intensity * t * (width - width))
|
231 |
+
y_offset = int(intensity * t * (height - height))
|
232 |
+
frame = Image.new("RGB", (width, height))
|
233 |
+
frame.paste(image, (-x_offset, -y_offset))
|
234 |
+
|
235 |
+
elif motion_type == "rotate":
|
236 |
+
angle = intensity * t * 360
|
237 |
+
rotated_image = image.rotate(angle, expand=True, resample=Image.Resampling.BICUBIC)
|
238 |
+
x_offset = (rotated_image.width - width) // 2
|
239 |
+
y_offset = (rotated_image.height - height) // 2
|
240 |
+
frame = Image.new("RGB", (width, height))
|
241 |
+
frame.paste(rotated_image, (-x_offset, -y_offset))
|
242 |
+
|
243 |
+
elif motion_type == "move_right":
|
244 |
+
x_offset = int(intensity * t * width)
|
245 |
+
frame = Image.new("RGB", (width, height), "black")
|
246 |
+
frame.paste(image, (x_offset, 0))
|
247 |
+
|
248 |
+
elif motion_type == "move_left":
|
249 |
+
x_offset = -int(intensity * t * width)
|
250 |
+
frame = Image.new("RGB", (width, height), "black")
|
251 |
+
frame.paste(image, (x_offset, 0))
|
252 |
+
|
253 |
+
elif motion_type == "move_up":
|
254 |
+
y_offset = -int(intensity * t * height)
|
255 |
+
frame = Image.new("RGB", (width, height), "black")
|
256 |
+
frame.paste(image, (0, y_offset))
|
257 |
+
|
258 |
+
elif motion_type == "move_down":
|
259 |
+
y_offset = int(intensity * t * height)
|
260 |
+
frame = Image.new("RGB", (width, height), "black")
|
261 |
+
frame.paste(image, (0, y_offset))
|
262 |
+
|
263 |
+
elif motion_type == "shake":
|
264 |
+
shake_intensity = intensity * 10
|
265 |
+
x_offset = int(shake_intensity * math.sin(t * 2 * math.pi * 5))
|
266 |
+
y_offset = int(shake_intensity * math.cos(t * 2 * math.pi * 3))
|
267 |
+
frame = Image.new("RGB", (width, height))
|
268 |
+
frame.paste(image, (x_offset, y_offset))
|
269 |
+
|
270 |
+
elif motion_type == "fade_in":
|
271 |
+
alpha = t
|
272 |
+
frame = Image.blend(Image.new("RGB", (width, height), "black"), image, alpha)
|
273 |
+
|
274 |
+
elif motion_type == "fade_out":
|
275 |
+
alpha = 1 - t
|
276 |
+
frame = Image.blend(Image.new("RGB", (width, height), "black"), image, alpha)
|
277 |
+
|
278 |
+
elif motion_type == "rain":
|
279 |
+
draw = ImageDraw.Draw(frame)
|
280 |
+
for _ in range(int(intensity * 5)):
|
281 |
+
x = np.random.randint(0, width)
|
282 |
+
y = np.random.randint(0, height)
|
283 |
+
length = np.random.randint(5, 15)
|
284 |
+
speed = intensity * 3
|
285 |
+
y_end = y + length + i * speed
|
286 |
+
draw.line([(x, y), (x, y_end)], fill="lightblue", width=1)
|
287 |
+
|
288 |
+
elif motion_type == "bokeh":
|
289 |
+
frame_np = np.array(frame)
|
290 |
+
frame_np = apply_bokeh(frame_np, intensity, t)
|
291 |
+
frame = Image.fromarray(frame_np)
|
292 |
+
|
293 |
+
frame_np = np.array(frame)
|
294 |
+
|
295 |
+
if color_preset:
|
296 |
+
frame_np = apply_color_grading(frame_np, color_preset, intensity)
|
297 |
+
if vignette_intensity > 0:
|
298 |
+
frame_np = apply_vignette(frame_np, vignette_intensity)
|
299 |
+
|
300 |
+
frame = Image.fromarray(frame_np)
|
301 |
+
|
302 |
+
draw = ImageDraw.Draw(frame)
|
303 |
+
if text_overlay and start_time <= t <= end_time:
|
304 |
+
try:
|
305 |
+
font = ImageFont.truetype("arial.ttf", font_size)
|
306 |
+
except IOError:
|
307 |
+
font = ImageFont.load_default()
|
308 |
+
text_width, text_height = draw.textsize(text_overlay, font=font)
|
309 |
+
x = (width - text_width) // 2
|
310 |
+
y = (height - text_height) // 2
|
311 |
+
draw.text((x, y), text_overlay, font=font, fill=text_color)
|
312 |
+
|
313 |
+
frames.append(np.array(frame))
|
314 |
+
|
315 |
+
return frames
|
316 |
+
|
317 |
+
def create_video_from_frames(frames, duration=5, fps=30):
|
318 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
319 |
+
output_filename = tmpfile.name
|
320 |
+
writer = imageio_ffmpeg.write_frames(output_filename, frames[0].shape[:2], pix_fmt_out='yuv420p', fps=fps, codec='libx264', preset="veryslow")
|
321 |
+
writer.send(None)
|
322 |
+
for frame in frames:
|
323 |
+
writer.send(frame)
|
324 |
+
writer.close()
|
325 |
+
return output_filename
|
326 |
+
|
327 |
+
def generate_and_animate(prompt):
|
328 |
+
try:
|
329 |
+
image = query_hf_image_generation(prompt)
|
330 |
+
image_description = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")(image)[0]['generated_text']
|
331 |
+
llm_response = query_llm(prompt, image_description)
|
332 |
+
motion_params = extract_motion_params(llm_response)
|
333 |
+
frames = apply_advanced_motion(
|
334 |
+
image,
|
335 |
+
motion_params["motion_type"],
|
336 |
+
motion_params["intensity"],
|
337 |
+
duration=5,
|
338 |
+
fps=30,
|
339 |
+
text_overlay=motion_params["text_overlay"],
|
340 |
+
text_color=motion_params["text_color"],
|
341 |
+
font_size=50,
|
342 |
+
start_time=motion_params["start_time"],
|
343 |
+
end_time=motion_params["end_time"],
|
344 |
+
color_preset=motion_params.get("color_preset", None),
|
345 |
+
vignette_intensity=motion_params.get("vignette_intensity", 0)
|
346 |
+
)
|
347 |
+
video_file = create_video_from_frames(frames)
|
348 |
+
return video_file, gr.Image.update(value=image)
|
349 |
+
except Exception as e:
|
350 |
+
return str(e), None
|
351 |
+
|
352 |
+
motion_types = [
|
353 |
+
"zoom", "pan", "rotate", "move_right", "move_left", "move_up", "move_down",
|
354 |
+
"shake", "fade_in", "fade_out", "head_nod", "head_shake", "eye_blink", "smile", "rain", "bokeh", "none"
|
355 |
+
]
|
356 |
+
text_colors = ["white", "black", "red", "green", "blue", "yellow"]
|
357 |
+
color_presets = ["sepia", "vintage", "black_and_white", "cold", "warm", "neon", "none"]
|
358 |
+
|
359 |
+
iface = gr.Interface(
|
360 |
+
fn=generate_and_animate,
|
361 |
+
inputs=[
|
362 |
+
gr.Textbox(label="Prompt"),
|
363 |
+
],
|
364 |
+
outputs=[
|
365 |
+
gr.Video(label="Generated Video"),
|
366 |
+
gr.Image(label="Generated Image")
|
367 |
+
],
|
368 |
+
title="AI Video Generator",
|
369 |
+
description="Enter a prompt to generate an image and animate it. Uses Flux 1, an LLM, and advanced video processing techniques."
|
370 |
+
)
|
371 |
+
|
372 |
+
if __name__ == "__main__":
|
373 |
+
iface.launch(share=True, debug=True)
|