Spaces:
Build error
Build error
File size: 16,253 Bytes
fb105a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import gradio as gr
import imageio_ffmpeg
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import math
import dlib
import tempfile
import requests
import os
from transformers import pipeline
import cv2
import io
detector = dlib.get_frontal_face_detector()
try:
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
except RuntimeError:
print("Downloading shape_predictor_68_face_landmarks.dat...")
landmarks_url = "http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2"
landmarks_compressed = requests.get(landmarks_url).content
import bz2
landmarks_data = bz2.decompress(landmarks_compressed)
with open("shape_predictor_68_face_landmarks.dat", "wb") as f:
f.write(landmarks_data)
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/flux-1-schnell"
HF_TOKEN = os.getenv("HF_TOKEN")
LLM_API_URL = "https://api-inference.huggingface.co/models/lmsys/fastchat-t5-3b-v1.0"
def query_hf_image_generation(prompt):
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
payload = {"inputs": prompt}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
return image
else:
raise Exception(f"Image generation failed: {response.content}")
def query_llm(prompt, image_description):
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
system_prompt = "You are an expert in image to video creation, and give only the motion type, intensity, text overlay, text color, text start and end times for the image described below based on user's prompt. Give the response in a JSON format."
prompt_template = f"<|system|>\n{system_prompt}</s>\n<|user|>\nImage Description: {image_description}\nUser Prompt: {prompt}</s>\n<|assistant|>\n"
payload = {"inputs": prompt_template, "max_new_tokens": 200}
response = requests.post(LLM_API_URL, headers=headers, json=payload)
if response.status_code == 200:
return response.json()[0]['generated_text']
else:
raise Exception(f"LLM query failed: {response.content}")
def extract_motion_params(llm_output):
try:
import json
start_index = llm_output.find('{')
end_index = llm_output.rfind('}') + 1
json_string = llm_output[start_index:end_index]
params = json.loads(json_string)
return params
except:
return {
"motion_type": "none",
"intensity": 0.25,
"text_overlay": "",
"text_color": "white",
"start_time": 0,
"end_time": 5
}
def detect_face_landmarks(image):
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
rects = detector(gray, 1)
if len(rects) > 0:
shape = predictor(gray, rects[0])
shape = np.array([(shape.part(i).x, shape.part(i).y) for i in range(68)])
return shape
else:
return None
def apply_color_grading(frame, color_preset, intensity):
if color_preset == "sepia":
sepia_matrix = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
frame_float = frame.astype(np.float32) / 255.0
sepia_effect = cv2.transform(frame_float, sepia_matrix)
blended_frame = (1 - intensity) * frame_float + intensity * sepia_effect
return (np.clip(blended_frame, 0, 1) * 255).astype(np.uint8)
elif color_preset == "vintage":
frame_float = frame.astype(np.float32) / 255.0
frame_float[:, :, 0] *= (1 - intensity * 0.6)
frame_float[:, :, 2] *= (1 + intensity * 0.3)
grayscale = cv2.cvtColor(frame_float, cv2.COLOR_RGB2GRAY)
grayscale_rgb = cv2.cvtColor(grayscale, cv2.COLOR_GRAY2RGB)
blended_frame = (1 - intensity * 0.5) * frame_float + intensity * 0.5 * grayscale_rgb
return (np.clip(blended_frame, 0, 1) * 255).astype(np.uint8)
elif color_preset == "black_and_white":
gray_frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
return cv2.cvtColor(gray_frame, cv2.COLOR_GRAY2RGB)
elif color_preset == "cold":
frame_float = frame.astype(np.float32) / 255.0
frame_float[:, :, 0] *= (1 + intensity * 0.7)
frame_float[:, :, 2] *= (1 - intensity * 0.2)
return (np.clip(frame_float, 0, 1) * 255).astype(np.uint8)
elif color_preset == "warm":
frame_float = frame.astype(np.float32) / 255.0
frame_float[:, :, 2] *= (1 + intensity * 0.7)
frame_float[:, :, 0] *= (1 - intensity * 0.2)
return (np.clip(frame_float, 0, 1) * 255).astype(np.uint8)
elif color_preset == "neon":
frame_float = frame.astype(np.float32) / 255.0
lab = cv2.cvtColor(frame_float, cv2.COLOR_RGB2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
l = clahe.apply(l)
lab = cv2.merge((l, a, b))
frame_float = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
frame_float[:, :, 0] *= (1 - intensity * 0.4)
frame_float[:, :, 1] *= (1 + intensity * 0.8)
frame_float[:, :, 2] *= (1 - intensity * 0.4)
return (np.clip(frame_float, 0, 1) * 255).astype(np.uint8)
return frame
def apply_vignette(frame, intensity):
width, height = frame.shape[1], frame.shape[0]
x = np.linspace(-1, 1, width)
y = np.linspace(-1, 1, height)
X, Y = np.meshgrid(x, y)
radius = np.sqrt(X**2 + Y**2)
vignette = 1 - intensity * radius**2
vignette = np.clip(vignette, 0, 1)
vignette = np.stack([vignette] * 3, axis=-1)
frame_float = frame.astype(np.float32) / 255.0
result = frame_float * vignette
return (np.clip(result, 0, 1) * 255).astype(np.uint8)
def apply_bokeh(frame, intensity, t):
frame_float = frame.astype(np.float32) / 255.0
gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
circles = []
for _ in range(int(intensity * 30)):
radius = np.random.randint(5, 30)
x = np.random.randint(radius, frame.shape[1] - radius)
y = np.random.randint(radius, frame.shape[0] - radius)
color = frame_float[y, x]
brightness = np.random.uniform(0.5, 1.0)
circles.append((x, y, radius, color, brightness))
bokeh_effect = np.zeros_like(frame_float)
for x, y, radius, color, brightness in circles:
y_grid, x_grid = np.ogrid[-y:frame.shape[0]-y, -x:frame.shape[1]-x]
mask = x_grid*x_grid + y_grid*y_grid <= radius*radius
bokeh_effect[mask] += np.array(color) * brightness * (0.5 + 0.5 * np.sin(t * 2 * math.pi))
blended_frame = frame_float + intensity * bokeh_effect
return (np.clip(blended_frame, 0, 1) * 255).astype(np.uint8)
def apply_advanced_motion(image, motion_type, intensity, duration, fps, text_overlay, text_color, font_size, start_time, end_time, color_preset, vignette_intensity):
frames = []
width, height = image.size
landmarks = detect_face_landmarks(image)
for i in range(int(duration * fps)):
t = i / (duration * fps)
frame = image.copy()
if landmarks is not None:
if motion_type == "head_nod":
top_head = landmarks[27]
bottom_head = landmarks[8]
angle = math.sin(t * 2 * math.pi) * intensity * 8
center_x = (top_head[0] + bottom_head[0]) // 2
center_y = (top_head[1] + bottom_head[1]) // 2
M = cv2.getRotationMatrix2D((center_x, center_y), angle, 1)
rotated_image = cv2.warpAffine(np.array(image), M, (width, height), flags=cv2.INTER_LANCZOS4)
frame = Image.fromarray(rotated_image)
elif motion_type == "head_shake":
top_head = landmarks[27]
left_head = landmarks[0]
right_head = landmarks[16]
angle = math.sin(t * 3 * math.pi) * intensity * 6
center_x = top_head[0]
center_y = top_head[1]
M = cv2.getRotationMatrix2D((center_x, center_y), angle, 1)
rotated_image = cv2.warpAffine(np.array(image), M, (width, height), flags=cv2.INTER_LANCZOS4)
frame = Image.fromarray(rotated_image)
elif motion_type == "eye_blink":
left_eye_top = landmarks[37]
left_eye_bottom = landmarks[41]
right_eye_top = landmarks[43]
right_eye_bottom = landmarks[47]
blink_progress = abs(math.sin(t * 2 * math.pi))
if blink_progress > 0.9:
draw = ImageDraw.Draw(frame)
draw.line([tuple(landmarks[36]), tuple(landmarks[39])], fill=text_color, width=2)
draw.line([tuple(landmarks[42]), tuple(landmarks[45])], fill=text_color, width=2)
else:
frame = image.copy()
elif motion_type == "smile":
mouth_left = landmarks[48]
mouth_right = landmarks[54]
mouth_top = landmarks[51]
mouth_bottom = landmarks[57]
smile_progress = intensity * t
draw = ImageDraw.Draw(frame)
curve_points = [
tuple(mouth_left),
(mouth_left[0] + (mouth_right[0] - mouth_left[0]) // 4, mouth_left[1] + int(20 * smile_progress)),
(mouth_left[0] + 3 * (mouth_right[0] - mouth_left[0]) // 4, mouth_right[1] + int(20 * smile_progress)),
tuple(mouth_right)
]
draw.line(curve_points, fill=text_color, width=4)
if motion_type == "zoom":
scale = 1 + intensity * t
new_size = (int(width * scale), int(height * scale))
resized_image = image.resize(new_size, Image.Resampling.LANCZOS)
x_offset = (new_size[0] - width) // 2
y_offset = (new_size[1] - height) // 2
frame = resized_image.crop((x_offset, y_offset, x_offset + width, y_offset + height))
elif motion_type == "pan":
x_offset = int(intensity * t * (width - width))
y_offset = int(intensity * t * (height - height))
frame = Image.new("RGB", (width, height))
frame.paste(image, (-x_offset, -y_offset))
elif motion_type == "rotate":
angle = intensity * t * 360
rotated_image = image.rotate(angle, expand=True, resample=Image.Resampling.BICUBIC)
x_offset = (rotated_image.width - width) // 2
y_offset = (rotated_image.height - height) // 2
frame = Image.new("RGB", (width, height))
frame.paste(rotated_image, (-x_offset, -y_offset))
elif motion_type == "move_right":
x_offset = int(intensity * t * width)
frame = Image.new("RGB", (width, height), "black")
frame.paste(image, (x_offset, 0))
elif motion_type == "move_left":
x_offset = -int(intensity * t * width)
frame = Image.new("RGB", (width, height), "black")
frame.paste(image, (x_offset, 0))
elif motion_type == "move_up":
y_offset = -int(intensity * t * height)
frame = Image.new("RGB", (width, height), "black")
frame.paste(image, (0, y_offset))
elif motion_type == "move_down":
y_offset = int(intensity * t * height)
frame = Image.new("RGB", (width, height), "black")
frame.paste(image, (0, y_offset))
elif motion_type == "shake":
shake_intensity = intensity * 10
x_offset = int(shake_intensity * math.sin(t * 2 * math.pi * 5))
y_offset = int(shake_intensity * math.cos(t * 2 * math.pi * 3))
frame = Image.new("RGB", (width, height))
frame.paste(image, (x_offset, y_offset))
elif motion_type == "fade_in":
alpha = t
frame = Image.blend(Image.new("RGB", (width, height), "black"), image, alpha)
elif motion_type == "fade_out":
alpha = 1 - t
frame = Image.blend(Image.new("RGB", (width, height), "black"), image, alpha)
elif motion_type == "rain":
draw = ImageDraw.Draw(frame)
for _ in range(int(intensity * 5)):
x = np.random.randint(0, width)
y = np.random.randint(0, height)
length = np.random.randint(5, 15)
speed = intensity * 3
y_end = y + length + i * speed
draw.line([(x, y), (x, y_end)], fill="lightblue", width=1)
elif motion_type == "bokeh":
frame_np = np.array(frame)
frame_np = apply_bokeh(frame_np, intensity, t)
frame = Image.fromarray(frame_np)
frame_np = np.array(frame)
if color_preset:
frame_np = apply_color_grading(frame_np, color_preset, intensity)
if vignette_intensity > 0:
frame_np = apply_vignette(frame_np, vignette_intensity)
frame = Image.fromarray(frame_np)
draw = ImageDraw.Draw(frame)
if text_overlay and start_time <= t <= end_time:
try:
font = ImageFont.truetype("arial.ttf", font_size)
except IOError:
font = ImageFont.load_default()
text_width, text_height = draw.textsize(text_overlay, font=font)
x = (width - text_width) // 2
y = (height - text_height) // 2
draw.text((x, y), text_overlay, font=font, fill=text_color)
frames.append(np.array(frame))
return frames
def create_video_from_frames(frames, duration=5, fps=30):
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
output_filename = tmpfile.name
writer = imageio_ffmpeg.write_frames(output_filename, frames[0].shape[:2], pix_fmt_out='yuv420p', fps=fps, codec='libx264', preset="veryslow")
writer.send(None)
for frame in frames:
writer.send(frame)
writer.close()
return output_filename
def generate_and_animate(prompt):
try:
image = query_hf_image_generation(prompt)
image_description = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")(image)[0]['generated_text']
llm_response = query_llm(prompt, image_description)
motion_params = extract_motion_params(llm_response)
frames = apply_advanced_motion(
image,
motion_params["motion_type"],
motion_params["intensity"],
duration=5,
fps=30,
text_overlay=motion_params["text_overlay"],
text_color=motion_params["text_color"],
font_size=50,
start_time=motion_params["start_time"],
end_time=motion_params["end_time"],
color_preset=motion_params.get("color_preset", None),
vignette_intensity=motion_params.get("vignette_intensity", 0)
)
video_file = create_video_from_frames(frames)
return video_file, gr.Image.update(value=image)
except Exception as e:
return str(e), None
motion_types = [
"zoom", "pan", "rotate", "move_right", "move_left", "move_up", "move_down",
"shake", "fade_in", "fade_out", "head_nod", "head_shake", "eye_blink", "smile", "rain", "bokeh", "none"
]
text_colors = ["white", "black", "red", "green", "blue", "yellow"]
color_presets = ["sepia", "vintage", "black_and_white", "cold", "warm", "neon", "none"]
iface = gr.Interface(
fn=generate_and_animate,
inputs=[
gr.Textbox(label="Prompt"),
],
outputs=[
gr.Video(label="Generated Video"),
gr.Image(label="Generated Image")
],
title="AI Video Generator",
description="Enter a prompt to generate an image and animate it. Uses Flux 1, an LLM, and advanced video processing techniques."
)
if __name__ == "__main__":
iface.launch(share=True, debug=True) |