Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Initialize the InferenceClient | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message, | |
history: list[dict], # Use a list of dictionaries instead of tuples | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
messages.append({"role": val['role'], "content": val['content']}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# Use chat_completion to get responses | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# Create the Gradio Interface for API | |
api_interface = gr.Interface( | |
fn=respond, | |
inputs=[ | |
gr.Textbox(label="Message"), | |
gr.JSON(label="History"), | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
outputs=gr.Textbox(label="Response"), | |
) | |
# Launch the API | |
if __name__ == "__main__": | |
api_interface.launch(server_name="0.0.0.0", server_port=7860, share=False) # Set share=False to avoid Hugging Face Spaces | |