import gradio as gr from huggingface_hub import InferenceClient # Initialize the InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[dict], # Use a list of dictionaries instead of tuples system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: messages.append({"role": val['role'], "content": val['content']}) messages.append({"role": "user", "content": message}) response = "" # Use chat_completion to get responses for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Create the Gradio Interface for API api_interface = gr.Interface( fn=respond, inputs=[ gr.Textbox(label="Message"), gr.JSON(label="History"), gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], outputs=gr.Textbox(label="Response"), ) # Launch the API if __name__ == "__main__": api_interface.launch(server_name="0.0.0.0", server_port=7860, share=False) # Set share=False to avoid Hugging Face Spaces