Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from deep_translator import GoogleTranslator | |
from indic_transliteration import sanscript | |
from indic_transliteration.detect import detect as detect_script | |
from indic_transliteration.sanscript import transliterate | |
import langdetect | |
import re | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def detect_language_script(text: str) -> tuple[str, str]: | |
""" | |
Detect language and script of the input text. | |
Returns (language_code, script_type) | |
""" | |
try: | |
lang = langdetect.detect(text) | |
script = None | |
try: | |
script = detect_script(text) | |
except: | |
pass | |
return lang, script | |
except: | |
return 'en', None | |
def is_romanized_indic(text: str) -> bool: | |
""" | |
Check if text appears to be romanized Indic language. | |
This is a basic implementation - you may want to enhance the patterns. | |
""" | |
# Common Bengali romanized patterns | |
bengali_patterns = [ | |
r'\b(ami|tumi|apni)\b', # Common pronouns | |
r'\b(ache|achen|thako|thaken)\b', # Common verbs | |
r'\b(kemon|bhalo|kharap)\b', # Common adjectives | |
r'\b(ki|kothay|keno)\b' # Common question words | |
] | |
text_lower = text.lower() | |
return any(re.search(pattern, text_lower) for pattern in bengali_patterns) | |
def romanized_to_bengali(text: str) -> str: | |
""" | |
Convert romanized Bengali text to Bengali script. | |
""" | |
# Define common Bengali word mappings | |
bengali_mappings = { | |
'ami': 'আমি', | |
'tumi': 'তুমি', | |
'apni': 'আপনি', | |
'kemon': 'কেমন', | |
'achen': 'আছেন', | |
'acchen': 'আছেন', | |
'bhalo': 'ভালো', | |
'achi': 'আছি', | |
'ki': 'কি', | |
'tumi': 'তুমি', | |
'kothay': 'কোথায়', | |
'keno': 'কেন', | |
# Add more mappings as needed | |
} | |
# Convert to lowercase for matching | |
text_lower = text.lower() | |
# Replace words based on mappings | |
for roman, bengali in bengali_mappings.items(): | |
text_lower = re.sub(r'\b' + roman + r'\b', bengali, text_lower) | |
# If no direct mapping found, try using transliteration | |
if text_lower == text.lower(): | |
try: | |
return transliterate(text, sanscript.ITRANS, sanscript.BENGALI) | |
except: | |
return text | |
return text_lower | |
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]: | |
""" | |
Translate text to target language, handling both script and romanized text. | |
Returns (translated_text, original_lang, is_transliterated) | |
""" | |
original_lang, script = detect_language_script(text) | |
is_transliterated = False | |
# Handle potential romanized Indic text | |
if original_lang == 'en' and is_romanized_indic(text): | |
text = romanized_to_bengali(text) | |
original_lang = 'bn' | |
is_transliterated = True | |
# Only translate if not already in target language | |
if original_lang != target_lang: | |
try: | |
translator = GoogleTranslator(source='auto', target=target_lang) | |
translated = translator.translate(text) | |
return translated, original_lang, is_transliterated | |
except Exception as e: | |
print(f"Translation error: {e}") | |
return text, original_lang, is_transliterated | |
return text, original_lang, is_transliterated | |
def check_custom_responses(message: str) -> str: | |
"""Check for specific patterns and return custom responses.""" | |
message_lower = message.lower() | |
custom_responses = { | |
"what is ur name?": "xylaria", | |
"what is your name?": "xylaria", | |
"what's your name?": "xylaria", | |
"whats your name": "xylaria", | |
"how many 'r' is in strawberry?": "3", | |
"who is your developer?": "sk md saad amin", | |
"how many r is in strawberry": "3", | |
"who is ur dev": "sk md saad amin", | |
"who is ur developer": "sk md saad amin", | |
} | |
for pattern, response in custom_responses.items(): | |
if pattern in message_lower: | |
return response | |
return None | |
def translate_to_original(text: str, original_lang: str, was_transliterated: bool) -> str: | |
""" | |
Translate response back to original language and script if needed. | |
""" | |
if original_lang != 'en': | |
try: | |
translator = GoogleTranslator(source='en', target=original_lang) | |
translated = translator.translate(text) | |
return translated | |
except Exception as e: | |
print(f"Translation error: {e}") | |
return text | |
return text | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# First check for custom responses | |
custom_response = check_custom_responses(message) | |
if custom_response: | |
yield custom_response | |
return | |
# Handle translation and transliteration | |
translated_msg, original_lang, was_transliterated = translate_text(message) | |
# Prepare conversation history | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
# Translate user message from history | |
trans_user_msg, _, _ = translate_text(val[0]) | |
messages.append({"role": "user", "content": trans_user_msg}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": translated_msg}) | |
# Get response from model | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
# Translate accumulated response if original message wasn't in English | |
if original_lang != 'en': | |
translated_response = translate_to_original(response, original_lang, was_transliterated) | |
yield translated_response | |
else: | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are a friendly Chatbot.", | |
label="System message" | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=512, | |
step=1, | |
label="Max new tokens" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)" | |
), | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |