Spaces:
Running
Running
File size: 6,956 Bytes
ef37daa 305d245 ef37daa f147126 305d245 f147126 305d245 f147126 305d245 f147126 305d245 f147126 305d245 f147126 305d245 f147126 305d245 ef37daa a387258 e4af908 a387258 464da3a 305d245 ef37daa a387258 ef37daa a387258 ef37daa 305d245 a387258 f147126 ef37daa 464da3a 305d245 f147126 464da3a a387258 f147126 a387258 f147126 ef37daa f147126 305d245 f147126 ef37daa 464da3a a387258 ef37daa a387258 ef37daa a387258 ef37daa 464da3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import gradio as gr
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
from indic_transliteration import sanscript
from indic_transliteration.detect import detect as detect_script
from indic_transliteration.sanscript import transliterate
import langdetect
import re
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def detect_language_script(text: str) -> tuple[str, str]:
"""
Detect language and script of the input text.
Returns (language_code, script_type)
"""
try:
lang = langdetect.detect(text)
script = None
try:
script = detect_script(text)
except:
pass
return lang, script
except:
return 'en', None
def is_romanized_indic(text: str) -> bool:
"""
Check if text appears to be romanized Indic language.
This is a basic implementation - you may want to enhance the patterns.
"""
# Common Bengali romanized patterns
bengali_patterns = [
r'\b(ami|tumi|apni)\b', # Common pronouns
r'\b(ache|achen|thako|thaken)\b', # Common verbs
r'\b(kemon|bhalo|kharap)\b', # Common adjectives
r'\b(ki|kothay|keno)\b' # Common question words
]
text_lower = text.lower()
return any(re.search(pattern, text_lower) for pattern in bengali_patterns)
def romanized_to_bengali(text: str) -> str:
"""
Convert romanized Bengali text to Bengali script.
"""
# Define common Bengali word mappings
bengali_mappings = {
'ami': 'আমি',
'tumi': 'তুমি',
'apni': 'আপনি',
'kemon': 'কেমন',
'achen': 'আছেন',
'acchen': 'আছেন',
'bhalo': 'ভালো',
'achi': 'আছি',
'ki': 'কি',
'tumi': 'তুমি',
'kothay': 'কোথায়',
'keno': 'কেন',
# Add more mappings as needed
}
# Convert to lowercase for matching
text_lower = text.lower()
# Replace words based on mappings
for roman, bengali in bengali_mappings.items():
text_lower = re.sub(r'\b' + roman + r'\b', bengali, text_lower)
# If no direct mapping found, try using transliteration
if text_lower == text.lower():
try:
return transliterate(text, sanscript.ITRANS, sanscript.BENGALI)
except:
return text
return text_lower
def translate_text(text: str, target_lang='en') -> tuple[str, str, bool]:
"""
Translate text to target language, handling both script and romanized text.
Returns (translated_text, original_lang, is_transliterated)
"""
original_lang, script = detect_language_script(text)
is_transliterated = False
# Handle potential romanized Indic text
if original_lang == 'en' and is_romanized_indic(text):
text = romanized_to_bengali(text)
original_lang = 'bn'
is_transliterated = True
# Only translate if not already in target language
if original_lang != target_lang:
try:
translator = GoogleTranslator(source='auto', target=target_lang)
translated = translator.translate(text)
return translated, original_lang, is_transliterated
except Exception as e:
print(f"Translation error: {e}")
return text, original_lang, is_transliterated
return text, original_lang, is_transliterated
def check_custom_responses(message: str) -> str:
"""Check for specific patterns and return custom responses."""
message_lower = message.lower()
custom_responses = {
"what is ur name?": "xylaria",
"what is your name?": "xylaria",
"what's your name?": "xylaria",
"whats your name": "xylaria",
"how many 'r' is in strawberry?": "3",
"who is your developer?": "sk md saad amin",
"how many r is in strawberry": "3",
"who is ur dev": "sk md saad amin",
"who is ur developer": "sk md saad amin",
}
for pattern, response in custom_responses.items():
if pattern in message_lower:
return response
return None
def translate_to_original(text: str, original_lang: str, was_transliterated: bool) -> str:
"""
Translate response back to original language and script if needed.
"""
if original_lang != 'en':
try:
translator = GoogleTranslator(source='en', target=original_lang)
translated = translator.translate(text)
return translated
except Exception as e:
print(f"Translation error: {e}")
return text
return text
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# First check for custom responses
custom_response = check_custom_responses(message)
if custom_response:
yield custom_response
return
# Handle translation and transliteration
translated_msg, original_lang, was_transliterated = translate_text(message)
# Prepare conversation history
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
# Translate user message from history
trans_user_msg, _, _ = translate_text(val[0])
messages.append({"role": "user", "content": trans_user_msg})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": translated_msg})
# Get response from model
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
# Translate accumulated response if original message wasn't in English
if original_lang != 'en':
translated_response = translate_to_original(response, original_lang, was_transliterated)
yield translated_response
else:
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a friendly Chatbot.",
label="System message"
),
gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
]
)
if __name__ == "__main__":
demo.launch(share=True) |