File size: 12,402 Bytes
24342ea
a184be7
65a6bd0
3a7c6b3
e1ff28f
a184be7
 
d95e3f7
 
bf2bb14
d95e3f7
3a7c6b3
d95e3f7
 
3a7c6b3
d95e3f7
 
3a7c6b3
d95e3f7
a184be7
d95e3f7
3a7c6b3
 
d95e3f7
3a7c6b3
8fde450
3a7c6b3
d95e3f7
 
 
a806d95
d95e3f7
 
 
24342ea
3a7c6b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750ea35
 
3a7c6b3
6ac5501
750ea35
6ac5501
750ea35
6ac5501
3a7c6b3
6ac5501
 
 
 
3a7c6b3
6ac5501
 
 
 
3a7c6b3
 
6ac5501
750ea35
d95e3f7
 
a184be7
d95e3f7
 
 
a184be7
3a7c6b3
d95e3f7
 
 
 
 
 
3a7c6b3
9f69ff9
a184be7
9f69ff9
a184be7
 
 
 
 
 
3a7c6b3
9f69ff9
3a7c6b3
a184be7
 
 
 
 
d95e3f7
 
3a7c6b3
d95e3f7
a184be7
 
3a7c6b3
9f69ff9
a184be7
 
3a7c6b3
9f69ff9
d95e3f7
 
 
 
3a7c6b3
d95e3f7
 
 
3a7c6b3
d95e3f7
 
 
 
 
 
 
3a7c6b3
d95e3f7
 
 
 
3a7c6b3
 
 
 
 
 
 
 
d95e3f7
 
3a7c6b3
d95e3f7
 
 
 
 
 
 
 
 
 
 
 
 
3a7c6b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d95e3f7
caf6b1d
3a7c6b3
 
 
 
 
 
 
 
 
 
 
9f69ff9
3a7c6b3
 
 
 
 
 
 
 
 
 
 
9f69ff9
6ac5501
3a7c6b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd67f43
24342ea
3a7c6b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d95e3f7
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import gradio as gr
from huggingface_hub import InferenceClient
import json

class XylariaChat:
    def __init__(self):
        # Securely load HuggingFace token
        self.hf_token = os.getenv("HF_TOKEN")
        if not self.hf_token:
            raise ValueError("HuggingFace token not found in environment variables")

        # Initialize the inference client
        self.client = InferenceClient(
            model="Qwen/Qwen-32B-Preview",
            api_key=self.hf_token
        )

        # Initialize conversation history and persistent memory
        self.conversation_history = []
        self.persistent_memory = {}
        self.chat_file_path = "chat_history.txt"  # File to save chats

        # System prompt with more detailed instructions
        self.system_prompt = """You are a helpful and harmless AI assistant you are Xylaria 1.4 Senoa, Made by Sk Md Saad Amin you think step by step
"""

    def store_information(self, key, value):
        """Store important information in persistent memory"""
        self.persistent_memory[key] = value

    def retrieve_information(self, key):
        """Retrieve information from persistent memory"""
        return self.persistent_memory.get(key)

    def save_chat(self):
        """Saves the current chat history to a text file."""
        try:
            with open(self.chat_file_path, "w") as f:
                chat_data = {
                    "conversation_history": self.conversation_history,
                    "persistent_memory": self.persistent_memory
                }
                json.dump(chat_data, f)
        except Exception as e:
            print(f"Error saving chat history: {e}")

    def load_chat(self):
        """Loads chat history from a text file."""
        try:
            with open(self.chat_file_path, "r") as f:
                chat_data = json.load(f)
                self.conversation_history = chat_data.get("conversation_history", [])
                self.persistent_memory = chat_data.get("persistent_memory", {})
                return self.conversation_history, self.persistent_memory
        except FileNotFoundError:
            print("Chat history file not found.")
            return [], {}
        except Exception as e:
            print(f"Error loading chat history: {e}")
            return [], {}

    def reset_conversation(self):
        """
        Completely reset the conversation history, persistent memory,
        and clear API-side memory
        """
        # Clear local memory
        self.conversation_history = []
        self.persistent_memory.clear()

        # Clear API-side memory by resetting the conversation
        try:
            # Attempt to clear any API-side session or context
            self.client = InferenceClient(
                model="Qwen/Qwen-32B-Preview",
                api_key=self.hf_token
            )
        except Exception as e:
            print(f"Error resetting API client: {e}")

        self.save_chat()  # Save the empty chat history
        return None  # To clear the chatbot interface

    def get_response(self, user_input):
        # Prepare messages with conversation context and persistent memory
        messages = [
            {"role": "system", "content": self.system_prompt},
            *self.conversation_history,
            {"role": "user", "content": user_input}
        ]

        # Add persistent memory context if available
        if self.persistent_memory:
            memory_context = "Remembered Information:\n" + "\n".join(
                [f"{k}: {v}" for k, v in self.persistent_memory.items()]
            )
            messages.insert(1, {"role": "system", "content": memory_context})

        # Generate response with streaming
        try:
            stream = self.client.chat.completions.create(
                messages=messages,
                temperature=0.5,
                max_tokens=10240,
                top_p=0.7,
                stream=True
            )

            return stream

        except Exception as e:
            return f"Error generating response: {str(e)}"

    def create_interface(self):
        def streaming_response(message, chat_history):
            # Clear input textbox
            response_stream = self.get_response(message)

            # If it's an error, return immediately
            if isinstance(response_stream, str):
                return "", chat_history + [[message, response_stream]]

            # Prepare for streaming response
            full_response = ""
            updated_history = chat_history + [[message, ""]]

            # Streaming output
            for chunk in response_stream:
                if chunk.choices[0].delta.content:
                    chunk_content = chunk.choices[0].delta.content
                    full_response += chunk_content

                    # Update the last message in chat history with partial response
                    updated_history[-1][1] = full_response
                    yield "", updated_history

            # Update conversation history
            self.conversation_history.append(
                {"role": "user", "content": message}
            )
            self.conversation_history.append(
                {"role": "assistant", "content": full_response}
            )

            # Limit conversation history to prevent token overflow
            if len(self.conversation_history) > 10:
                self.conversation_history = self.conversation_history[-10:]

            self.save_chat()

        def load_chat_interface():
            """Loads the chat history into the chatbot interface."""
            self.load_chat()
            return self.conversation_history

        # Custom CSS for Inter font and sidebar
        custom_css = """
        @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');

        body, .gradio-container {
            font-family: 'Inter', sans-serif !important;
        }
        
        .chatbot-container .message {
            font-family: 'Inter', sans-serif !important;
        }
        
        .gradio-container input, 
        .gradio-container textarea, 
        .gradio-container button {
            font-family: 'Inter', sans-serif !important;
        }

        /* Sidebar styling */
        #sidebar {
            background-color: #f2f2f2;
            border-right: 1px solid #ccc;
            padding: 10px;
            height: 100vh;
            overflow-y: auto;
        }

        #sidebar ul {
            list-style-type: none;
            padding: 0;
        }

        #sidebar li {
            margin-bottom: 5px;
        }
        /* Main chat area */
        #main-chat {
            padding: 20px;
        }
        """

        # Example prompts
        example_prompts = [
            "How do I get started with coding?",
            "Tell me a fun fact about science.",
            "What are some good books to read?"
        ]

        # Function to forward prompt to the textbox
        def forward_prompt(prompt):
            return prompt

        with gr.Blocks(theme='soft', css=custom_css) as demo:
            with gr.Row():
                # Sidebar for displaying chat history
                with gr.Column(elem_id="sidebar", scale=1):  # Added elem_id for CSS
                    gr.Markdown("### Chat History")
                    load_button = gr.Button("Load Chat History")
                    chat_list = gr.Markdown("No chat history found.")

                    load_button.click(
                        fn=lambda: gr.Markdown.update(value=self.format_chat_history()),
                        inputs=None,
                        outputs=[chat_list]
                    )

                # Main chat interface
                with gr.Column(elem_id="main-chat", scale=3):
                    # Show Xylaria and example prompts only on the first page/new chat
                    with gr.Column(visible=True) as start_page:
                        gr.Markdown("# Xylaria")
                        with gr.Row():
                          for prompt in example_prompts:
                            gr.Button(prompt).click(
                                fn=forward_prompt,
                                inputs=gr.State(prompt),
                                outputs=txt
                            )

                    with gr.Column(visible=False) as chat_page:
                        chatbot = gr.Chatbot(
                            label="Xylaria 1.4 Senoa",
                            height=500,
                            show_copy_button=True
                        )

                        # Input row with improved layout
                        with gr.Row():
                            txt = gr.Textbox(
                                show_label=False,
                                placeholder="Type your message...",
                                container=False,
                                scale=4
                            )
                            btn = gr.Button("Send", scale=1)

                        # Clear history and memory buttons
                        clear = gr.Button("Clear Conversation")
                        clear_memory = gr.Button("Clear Memory")

                    # Toggle between start page and chat page
                    def toggle_page(choice):
                        return gr.Column.update(visible=choice == "chat"), gr.Column.update(visible=choice == "start")

                    start_page.visible = True
                    chat_page.visible = False

                    # Submit functionality with streaming
                    btn.click(
                        fn=streaming_response,
                        inputs=[txt, chatbot],
                        outputs=[txt, chatbot]
                    ).then(
                        fn=lambda: toggle_page("chat"),
                        inputs=gr.State("chat"),
                        outputs=[chat_page, start_page]
                    )
                    txt.submit(
                        fn=streaming_response,
                        inputs=[txt, chatbot],
                        outputs=[txt, chatbot]
                    ).then(
                        fn=lambda: toggle_page("chat"),
                        inputs=gr.State("chat"),
                        outputs=[chat_page, start_page]
                    )

                    # Clear conversation history
                    clear.click(
                        fn=lambda: None,
                        inputs=None,
                        outputs=[chatbot],
                        queue=False
                    ).then(
                        fn=lambda: toggle_page("start"),
                        inputs=gr.State("start"),
                        outputs=[chat_page, start_page]
                    )

                    # Clear persistent memory and reset conversation
                    clear_memory.click(
                        fn=self.reset_conversation,
                        inputs=None,
                        outputs=[chatbot],
                        queue=False
                    ).then(
                        fn=lambda: toggle_page("start"),
                        inputs=gr.State("start"),
                        outputs=[chat_page, start_page]
                    )

                    # Ensure memory is cleared when the interface is closed
                    demo.load(self.reset_conversation, None, None)

        return demo

    def format_chat_history(self):
        """Formats the chat history for display in the sidebar."""
        self.load_chat()  # Load the chat history first
        if not self.conversation_history:
            return "No chat history found."

        formatted_history = ""
        for chat in self.conversation_history:
            if chat["role"] == "user":
                formatted_history += f"**You:** {chat['content']}\n\n"
            elif chat["role"] == "assistant":
                formatted_history += f"**Xylaria:** {chat['content']}\n\n"

        return formatted_history

# Launch the interface
def main():
    chat = XylariaChat()
    interface = chat.create_interface()
    interface.launch(
        share=True,  # Optional: create a public link
        debug=True   # Show detailed errors
    )

if __name__ == "__main__":
    main()