Spaces:
Running
Running
File size: 12,402 Bytes
24342ea a184be7 65a6bd0 3a7c6b3 e1ff28f a184be7 d95e3f7 bf2bb14 d95e3f7 3a7c6b3 d95e3f7 3a7c6b3 d95e3f7 3a7c6b3 d95e3f7 a184be7 d95e3f7 3a7c6b3 d95e3f7 3a7c6b3 8fde450 3a7c6b3 d95e3f7 a806d95 d95e3f7 24342ea 3a7c6b3 750ea35 3a7c6b3 6ac5501 750ea35 6ac5501 750ea35 6ac5501 3a7c6b3 6ac5501 3a7c6b3 6ac5501 3a7c6b3 6ac5501 750ea35 d95e3f7 a184be7 d95e3f7 a184be7 3a7c6b3 d95e3f7 3a7c6b3 9f69ff9 a184be7 9f69ff9 a184be7 3a7c6b3 9f69ff9 3a7c6b3 a184be7 d95e3f7 3a7c6b3 d95e3f7 a184be7 3a7c6b3 9f69ff9 a184be7 3a7c6b3 9f69ff9 d95e3f7 3a7c6b3 d95e3f7 3a7c6b3 d95e3f7 3a7c6b3 d95e3f7 3a7c6b3 d95e3f7 3a7c6b3 d95e3f7 3a7c6b3 d95e3f7 caf6b1d 3a7c6b3 9f69ff9 3a7c6b3 9f69ff9 6ac5501 3a7c6b3 dd67f43 24342ea 3a7c6b3 d95e3f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import os
import gradio as gr
from huggingface_hub import InferenceClient
import json
class XylariaChat:
def __init__(self):
# Securely load HuggingFace token
self.hf_token = os.getenv("HF_TOKEN")
if not self.hf_token:
raise ValueError("HuggingFace token not found in environment variables")
# Initialize the inference client
self.client = InferenceClient(
model="Qwen/Qwen-32B-Preview",
api_key=self.hf_token
)
# Initialize conversation history and persistent memory
self.conversation_history = []
self.persistent_memory = {}
self.chat_file_path = "chat_history.txt" # File to save chats
# System prompt with more detailed instructions
self.system_prompt = """You are a helpful and harmless AI assistant you are Xylaria 1.4 Senoa, Made by Sk Md Saad Amin you think step by step
"""
def store_information(self, key, value):
"""Store important information in persistent memory"""
self.persistent_memory[key] = value
def retrieve_information(self, key):
"""Retrieve information from persistent memory"""
return self.persistent_memory.get(key)
def save_chat(self):
"""Saves the current chat history to a text file."""
try:
with open(self.chat_file_path, "w") as f:
chat_data = {
"conversation_history": self.conversation_history,
"persistent_memory": self.persistent_memory
}
json.dump(chat_data, f)
except Exception as e:
print(f"Error saving chat history: {e}")
def load_chat(self):
"""Loads chat history from a text file."""
try:
with open(self.chat_file_path, "r") as f:
chat_data = json.load(f)
self.conversation_history = chat_data.get("conversation_history", [])
self.persistent_memory = chat_data.get("persistent_memory", {})
return self.conversation_history, self.persistent_memory
except FileNotFoundError:
print("Chat history file not found.")
return [], {}
except Exception as e:
print(f"Error loading chat history: {e}")
return [], {}
def reset_conversation(self):
"""
Completely reset the conversation history, persistent memory,
and clear API-side memory
"""
# Clear local memory
self.conversation_history = []
self.persistent_memory.clear()
# Clear API-side memory by resetting the conversation
try:
# Attempt to clear any API-side session or context
self.client = InferenceClient(
model="Qwen/Qwen-32B-Preview",
api_key=self.hf_token
)
except Exception as e:
print(f"Error resetting API client: {e}")
self.save_chat() # Save the empty chat history
return None # To clear the chatbot interface
def get_response(self, user_input):
# Prepare messages with conversation context and persistent memory
messages = [
{"role": "system", "content": self.system_prompt},
*self.conversation_history,
{"role": "user", "content": user_input}
]
# Add persistent memory context if available
if self.persistent_memory:
memory_context = "Remembered Information:\n" + "\n".join(
[f"{k}: {v}" for k, v in self.persistent_memory.items()]
)
messages.insert(1, {"role": "system", "content": memory_context})
# Generate response with streaming
try:
stream = self.client.chat.completions.create(
messages=messages,
temperature=0.5,
max_tokens=10240,
top_p=0.7,
stream=True
)
return stream
except Exception as e:
return f"Error generating response: {str(e)}"
def create_interface(self):
def streaming_response(message, chat_history):
# Clear input textbox
response_stream = self.get_response(message)
# If it's an error, return immediately
if isinstance(response_stream, str):
return "", chat_history + [[message, response_stream]]
# Prepare for streaming response
full_response = ""
updated_history = chat_history + [[message, ""]]
# Streaming output
for chunk in response_stream:
if chunk.choices[0].delta.content:
chunk_content = chunk.choices[0].delta.content
full_response += chunk_content
# Update the last message in chat history with partial response
updated_history[-1][1] = full_response
yield "", updated_history
# Update conversation history
self.conversation_history.append(
{"role": "user", "content": message}
)
self.conversation_history.append(
{"role": "assistant", "content": full_response}
)
# Limit conversation history to prevent token overflow
if len(self.conversation_history) > 10:
self.conversation_history = self.conversation_history[-10:]
self.save_chat()
def load_chat_interface():
"""Loads the chat history into the chatbot interface."""
self.load_chat()
return self.conversation_history
# Custom CSS for Inter font and sidebar
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
body, .gradio-container {
font-family: 'Inter', sans-serif !important;
}
.chatbot-container .message {
font-family: 'Inter', sans-serif !important;
}
.gradio-container input,
.gradio-container textarea,
.gradio-container button {
font-family: 'Inter', sans-serif !important;
}
/* Sidebar styling */
#sidebar {
background-color: #f2f2f2;
border-right: 1px solid #ccc;
padding: 10px;
height: 100vh;
overflow-y: auto;
}
#sidebar ul {
list-style-type: none;
padding: 0;
}
#sidebar li {
margin-bottom: 5px;
}
/* Main chat area */
#main-chat {
padding: 20px;
}
"""
# Example prompts
example_prompts = [
"How do I get started with coding?",
"Tell me a fun fact about science.",
"What are some good books to read?"
]
# Function to forward prompt to the textbox
def forward_prompt(prompt):
return prompt
with gr.Blocks(theme='soft', css=custom_css) as demo:
with gr.Row():
# Sidebar for displaying chat history
with gr.Column(elem_id="sidebar", scale=1): # Added elem_id for CSS
gr.Markdown("### Chat History")
load_button = gr.Button("Load Chat History")
chat_list = gr.Markdown("No chat history found.")
load_button.click(
fn=lambda: gr.Markdown.update(value=self.format_chat_history()),
inputs=None,
outputs=[chat_list]
)
# Main chat interface
with gr.Column(elem_id="main-chat", scale=3):
# Show Xylaria and example prompts only on the first page/new chat
with gr.Column(visible=True) as start_page:
gr.Markdown("# Xylaria")
with gr.Row():
for prompt in example_prompts:
gr.Button(prompt).click(
fn=forward_prompt,
inputs=gr.State(prompt),
outputs=txt
)
with gr.Column(visible=False) as chat_page:
chatbot = gr.Chatbot(
label="Xylaria 1.4 Senoa",
height=500,
show_copy_button=True
)
# Input row with improved layout
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Type your message...",
container=False,
scale=4
)
btn = gr.Button("Send", scale=1)
# Clear history and memory buttons
clear = gr.Button("Clear Conversation")
clear_memory = gr.Button("Clear Memory")
# Toggle between start page and chat page
def toggle_page(choice):
return gr.Column.update(visible=choice == "chat"), gr.Column.update(visible=choice == "start")
start_page.visible = True
chat_page.visible = False
# Submit functionality with streaming
btn.click(
fn=streaming_response,
inputs=[txt, chatbot],
outputs=[txt, chatbot]
).then(
fn=lambda: toggle_page("chat"),
inputs=gr.State("chat"),
outputs=[chat_page, start_page]
)
txt.submit(
fn=streaming_response,
inputs=[txt, chatbot],
outputs=[txt, chatbot]
).then(
fn=lambda: toggle_page("chat"),
inputs=gr.State("chat"),
outputs=[chat_page, start_page]
)
# Clear conversation history
clear.click(
fn=lambda: None,
inputs=None,
outputs=[chatbot],
queue=False
).then(
fn=lambda: toggle_page("start"),
inputs=gr.State("start"),
outputs=[chat_page, start_page]
)
# Clear persistent memory and reset conversation
clear_memory.click(
fn=self.reset_conversation,
inputs=None,
outputs=[chatbot],
queue=False
).then(
fn=lambda: toggle_page("start"),
inputs=gr.State("start"),
outputs=[chat_page, start_page]
)
# Ensure memory is cleared when the interface is closed
demo.load(self.reset_conversation, None, None)
return demo
def format_chat_history(self):
"""Formats the chat history for display in the sidebar."""
self.load_chat() # Load the chat history first
if not self.conversation_history:
return "No chat history found."
formatted_history = ""
for chat in self.conversation_history:
if chat["role"] == "user":
formatted_history += f"**You:** {chat['content']}\n\n"
elif chat["role"] == "assistant":
formatted_history += f"**Xylaria:** {chat['content']}\n\n"
return formatted_history
# Launch the interface
def main():
chat = XylariaChat()
interface = chat.create_interface()
interface.launch(
share=True, # Optional: create a public link
debug=True # Show detailed errors
)
if __name__ == "__main__":
main() |