Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from smolagents import CodeAgent, InferenceClientModel | |
from smolagents.tools.serper import SerperSearchTool # make sure this path is correct | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
serper_api_key = os.getenv("SERPER_API_KEY") | |
# --- Basic Agent Definition --- | |
class BasicAgent: | |
def __init__(self): | |
serper_api_key = os.getenv("SERPER_API_KEY") | |
if not serper_api_key: | |
raise ValueError("Missing SERPER_API_KEY in environment variables.") | |
search_tool = SerperSearchTool(api_key=serper_api_key) | |
model = InferenceClientModel() | |
self.agent = CodeAgent( | |
model=model, | |
tools=[search_tool], | |
) | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
try: | |
answer = self.agent.run(question) | |
print(f"Agent returned answer: {answer}") | |
return answer | |
except Exception as e: | |
print(f"Error running agent: {e}") | |
return f"AGENT ERROR: {e}" | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# Instantiate Agent | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response: {e}", None | |
except Exception as e: | |
print(f"Unexpected error: {e}") | |
return f"Unexpected error fetching questions: {e}", None | |
# Run Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# Prepare Submission | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# Submit Answers | |
print(f"Submitting to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"HTTP {e.response.status_code}: " | |
try: | |
error_json = e.response.json() | |
error_detail += f"{error_json.get('detail', e.response.text)}" | |
except: | |
error_detail += f"{e.response.text[:500]}" | |
print(error_detail) | |
return f"Submission Failed: {error_detail}", pd.DataFrame(results_log) | |
except requests.exceptions.Timeout: | |
return "Submission Failed: Request timed out.", pd.DataFrame(results_log) | |
except requests.exceptions.RequestException as e: | |
return f"Submission Failed: Network error - {e}", pd.DataFrame(results_log) | |
except Exception as e: | |
return f"Unexpected error during submission: {e}", pd.DataFrame(results_log) | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Clone this space and modify the code to define your agent's logic, tools, and dependencies. | |
2. Log in using the button below. Your Hugging Face username is required for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to test your agent and get a score. | |
--- | |
**Note:** The submission process may take time. You are encouraged to optimize your implementation. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
# --- Entry Point --- | |
if __name__ == "__main__": | |
print("\n" + "-" * 30 + " App Starting " + "-" * 30) | |
space_host = os.getenv("SPACE_HOST") | |
space_id = os.getenv("SPACE_ID") | |
if space_host: | |
print(f"✅ SPACE_HOST: {space_host}") | |
print(f" Runtime URL: https://{space_host}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST not found (running locally?).") | |
if space_id: | |
print(f"✅ SPACE_ID: {space_id}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID not found (running locally?).") | |
print("-" * (60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |