File size: 7,697 Bytes
574b6ca
cac5b18
 
cd4ed8b
791c663
6abbe6e
 
 
396989b
fdf6474
53f6050
6abbe6e
fcf479d
cd4ed8b
 
 
c0dbb5d
6abbe6e
 
 
 
 
cd4ed8b
fdf6474
 
cd4ed8b
 
fdf6474
22a9aed
fdf6474
cd4ed8b
adda9fb
 
 
 
 
 
 
cd4ed8b
fdf6474
6abbe6e
fdf6474
cd4ed8b
 
 
 
fdf6474
cd4ed8b
fdf6474
 
 
 
 
 
 
 
 
 
 
cd4ed8b
22a9aed
cd4ed8b
791c663
cd4ed8b
fdf6474
 
 
cd4ed8b
fdf6474
 
 
2bbccd0
fdf6474
791c663
fdf6474
 
cd4ed8b
 
fdf6474
cd4ed8b
fdf6474
 
cd4ed8b
 
 
 
 
 
 
fdf6474
cd4ed8b
fdf6474
 
cd4ed8b
 
791c663
fdf6474
 
cd4ed8b
791c663
 
cd4ed8b
 
 
791c663
cd4ed8b
 
fdf6474
 
cd4ed8b
 
fdf6474
cd4ed8b
fdf6474
 
 
 
53f6050
cd4ed8b
 
 
 
 
791c663
cd4ed8b
791c663
fdf6474
 
cd4ed8b
 
 
fdf6474
cd4ed8b
fdf6474
cd4ed8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53f6050
cd4ed8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
791c663
fdf6474
cd4ed8b
 
 
fdf6474
 
 
 
791c663
984a8c3
cd4ed8b
 
984a8c3
cd4ed8b
53f6050
cd4ed8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import CodeAgent, InferenceClientModel
from smolagents.tools.serper import SerperSearchTool  # make sure this path is correct


# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
serper_api_key = os.getenv("SERPER_API_KEY")

# --- Basic Agent Definition ---
class BasicAgent:
    def __init__(self):

        serper_api_key = os.getenv("SERPER_API_KEY")
        if not serper_api_key:
            raise ValueError("Missing SERPER_API_KEY in environment variables.")

        search_tool = SerperSearchTool(api_key=serper_api_key)
        model = InferenceClientModel()

        self.agent = CodeAgent(
            model=model,
            tools=[search_tool],
        )

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        try:
            answer = self.agent.run(question)
            print(f"Agent returned answer: {answer}")
            return answer
        except Exception as e:
            print(f"Error running agent: {e}")
            return f"AGENT ERROR: {e}"



def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    space_id = os.getenv("SPACE_ID")
    
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Instantiate Agent
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response: {e}", None
    except Exception as e:
        print(f"Unexpected error: {e}")
        return f"Unexpected error fetching questions: {e}", None

    # Run Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Prepare Submission
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # Submit Answers
    print(f"Submitting to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"HTTP {e.response.status_code}: "
        try:
            error_json = e.response.json()
            error_detail += f"{error_json.get('detail', e.response.text)}"
        except:
            error_detail += f"{e.response.text[:500]}"
        print(error_detail)
        return f"Submission Failed: {error_detail}", pd.DataFrame(results_log)
    except requests.exceptions.Timeout:
        return "Submission Failed: Request timed out.", pd.DataFrame(results_log)
    except requests.exceptions.RequestException as e:
        return f"Submission Failed: Network error - {e}", pd.DataFrame(results_log)
    except Exception as e:
        return f"Unexpected error during submission: {e}", pd.DataFrame(results_log)


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Clone this space and modify the code to define your agent's logic, tools, and dependencies.
        2. Log in using the button below. Your Hugging Face username is required for submission.
        3. Click 'Run Evaluation & Submit All Answers' to test your agent and get a score.
        ---
        **Note:** The submission process may take time. You are encouraged to optimize your implementation.
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )


# --- Entry Point ---
if __name__ == "__main__":
    print("\n" + "-" * 30 + " App Starting " + "-" * 30)
    
    space_host = os.getenv("SPACE_HOST")
    space_id = os.getenv("SPACE_ID")

    if space_host:
        print(f"✅ SPACE_HOST: {space_host}")
        print(f"   Runtime URL: https://{space_host}.hf.space")
    else:
        print("ℹ️  SPACE_HOST not found (running locally?).")

    if space_id:
        print(f"✅ SPACE_ID: {space_id}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
    else:
        print("ℹ️  SPACE_ID not found (running locally?).")

    print("-" * (60 + len(" App Starting ")) + "\n")
    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)