Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import json | |
import re | |
import numexpr | |
import pandas as pd | |
import math | |
import pdfminer | |
from duckduckgo_search import DDGS | |
from pdfminer.high_level import extract_text | |
from bs4 import BeautifulSoup | |
import html2text | |
from typing import Dict, Any, List, Tuple, Callable, Optional | |
from dotenv import load_dotenv | |
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig | |
import torch | |
import time | |
import gc | |
# --- Load Environment Variables --- | |
load_dotenv() | |
SERPER_API_KEY = os.getenv("SERPER_API_KEY") | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
MAX_STEPS = 6 | |
MAX_TOKENS = 256 | |
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct" | |
# --- Configure Environment for Hugging Face Spaces --- | |
os.environ["PIP_BREAK_SYSTEM_PACKAGES"] = "1" | |
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1" | |
os.environ["BITSANDBYTES_NOWELCOME"] = "1" | |
print("Loading model (CPU-compatible)...") | |
start_time = time.time() | |
# Load model with explicit configuration for better compatibility | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
trust_remote_code=True, | |
torch_dtype=torch.float32, # Use float32 for CPU compatibility | |
device_map="cpu", # Explicitly set to CPU | |
low_cpu_mem_usage=True, # Optimize for low memory usage | |
use_cache=False # Disable cache to avoid DynamicCache issues | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_NAME, | |
use_fast=False, | |
trust_remote_code=True | |
) | |
# Ensure pad token is set | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
load_time = time.time() - start_time | |
print(f"Model loaded in {load_time:.2f} seconds") | |
# --- Tools for GAIA Agent --- | |
def web_search(query: str) -> str: | |
"""Search the web using DuckDuckGo or Serper API""" | |
try: | |
if SERPER_API_KEY: | |
# Use Serper API if key is available | |
params = { | |
'q': query, | |
'num': 3, | |
'hl': 'en', | |
'gl': 'us' | |
} | |
headers = { | |
'X-API-KEY': SERPER_API_KEY, | |
'Content-Type': 'application/json' | |
} | |
response = requests.post( | |
'https://google.serper.dev/search', | |
headers=headers, | |
json=params, | |
timeout=10 | |
) | |
results = response.json() | |
if 'organic' in results: | |
return json.dumps([r['title'] + ": " + r['snippet'] for r in results['organic'][:3]]) | |
return "No results found" | |
else: | |
# Fallback to DuckDuckGo | |
with DDGS() as ddgs: | |
results = [r for r in ddgs.text(query, max_results=3)] | |
return json.dumps([r['title'] + ": " + r['body'] for r in results]) | |
except Exception as e: | |
return f"Search error: {str(e)}" | |
def calculator(expression: str) -> str: | |
"""Evaluate mathematical expressions safely""" | |
try: | |
# Clean the expression | |
expression = re.sub(r'[^\d+\-*/().\s]', '', expression) | |
result = numexpr.evaluate(expression) | |
return str(result) | |
except Exception as e: | |
return f"Calculation error: {str(e)}" | |
def read_pdf(file_path: str) -> str: | |
"""Extract text from PDF files""" | |
try: | |
text = extract_text(file_path) | |
return text[:2000] if text else "No text found in PDF" | |
except Exception as e: | |
return f"PDF read error: {str(e)}" | |
def read_webpage(url: str) -> str: | |
"""Fetch and extract text from web pages""" | |
try: | |
headers = { | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' | |
} | |
response = requests.get(url, timeout=10, headers=headers) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.text, 'html.parser') | |
# Remove script and style elements | |
for script in soup(["script", "style"]): | |
script.decompose() | |
text = soup.get_text(separator=' ', strip=True) | |
return text[:2000] if text else "No text found on webpage" | |
except Exception as e: | |
return f"Webpage read error: {str(e)}" | |
TOOLS = { | |
"web_search": web_search, | |
"calculator": calculator, | |
"read_pdf": read_pdf, | |
"read_webpage": read_webpage | |
} | |
# --- GAIA Agent Implementation --- | |
class GAIA_Agent: | |
def __init__(self): | |
self.tools = TOOLS | |
self.history = [] | |
self.system_prompt = ( | |
"You are an expert GAIA problem solver. Use these tools: {web_search, calculator, read_pdf, read_webpage}.\n" | |
"Guidelines:\n" | |
"1. Think step-by-step. Explain reasoning\n" | |
"2. Use tools for calculations, searches, or file operations\n" | |
"3. Tools must be called as: ```json\n{'tool': 'tool_name', 'args': {'arg1': value}}```\n" | |
"4. Final Answer must be exact and standalone\n\n" | |
"Example:\n" | |
"Question: \"What's the population density of France? (File: france_data.pdf)\"\n" | |
"Thought: Need population and area. Read PDF first.\n" | |
"Action: ```json\n{'tool': 'read_pdf', 'args': {'file_path': 'france_data.pdf'}}```\n" | |
"Observation: Population: 67.8M, Area: 643,801 km²\n" | |
"Thought: Now calculate density: 67,800,000 / 643,801\n" | |
"Action: ```json\n{'tool': 'calculator', 'args': {'expression': '67800000 / 643801'}}```\n" | |
"Observation: 105.32\n" | |
"Final Answer: 105.32 people/km²" | |
) | |
def __call__(self, question: str) -> str: | |
print(f"\nProcessing: {question[:80]}...") | |
self.history = [f"Question: {question}"] | |
try: | |
for step in range(MAX_STEPS): | |
prompt = self._build_prompt() | |
response = self._call_model(prompt) | |
if "Final Answer" in response: | |
answer = response.split("Final Answer:")[-1].strip() | |
print(f"Final Answer: {answer}") | |
return answer | |
tool_call = self._parse_tool_call(response) | |
if tool_call: | |
tool_name, args = tool_call | |
observation = self._use_tool(tool_name, args) | |
self.history.append(f"Observation: {observation}") | |
else: | |
self.history.append(f"Thought: {response}") | |
# Clean up memory after each step | |
if step % 2 == 0: | |
gc.collect() | |
return "Agent couldn't find solution within step limit" | |
except Exception as e: | |
print(f"Error in agent execution: {str(e)}") | |
return f"Agent error: {str(e)}" | |
def _build_prompt(self) -> str: | |
prompt = "<|system|>\n" + self.system_prompt + "<|end|>\n" | |
prompt += "<|user|>\n" + "\n".join(self.history) + "<|end|>\n" | |
prompt += "<|assistant|>" | |
return prompt | |
def _call_model(self, prompt: str) -> str: | |
start_time = time.time() | |
try: | |
# Tokenize input | |
inputs = tokenizer( | |
prompt, | |
return_tensors="pt", | |
return_attention_mask=True, | |
truncation=True, | |
max_length=3072 # Leave room for generation | |
) | |
# Move to same device as model | |
inputs = {k: v.to(model.device) for k, v in inputs.items()} | |
# Create generation config | |
generation_config = GenerationConfig( | |
max_new_tokens=MAX_TOKENS, | |
temperature=0.01, | |
do_sample=True, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
use_cache=False # Disable cache to avoid DynamicCache issues | |
) | |
# Generate response | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
generation_config=generation_config | |
) | |
# Decode response | |
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
response = full_response.split("<|assistant|>")[-1].strip() | |
gen_time = time.time() - start_time | |
print(f"Generated {len(response)} tokens in {gen_time:.2f}s: {response[:60]}...") | |
# Clean up | |
del inputs, outputs | |
gc.collect() | |
return response | |
except Exception as e: | |
print(f"Model generation error: {str(e)}") | |
return f"Generation error: {str(e)}" | |
def _parse_tool_call(self, text: str) -> Optional[Tuple[str, Dict]]: | |
try: | |
json_match = re.search(r'```json\s*({.*?})\s*```', text, re.DOTALL) | |
if json_match: | |
tool_call = json.loads(json_match.group(1)) | |
if "tool" in tool_call and "args" in tool_call: | |
return tool_call["tool"], tool_call["args"] | |
except Exception as e: | |
print(f"Tool parse error: {str(e)}") | |
return None | |
def _use_tool(self, tool_name: str, args: Dict) -> str: | |
if tool_name not in self.tools: | |
return f"Error: Unknown tool {tool_name}" | |
print(f"Using tool: {tool_name}({args})") | |
try: | |
start_time = time.time() | |
result = self.tools[tool_name](**args) | |
exec_time = time.time() - start_time | |
print(f"Tool executed in {exec_time:.2f}s") | |
return str(result)[:500] # Truncate long outputs | |
except Exception as e: | |
return f"Tool error: {str(e)}" | |
# --- Evaluation Runner --- | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
"""Fetches questions, runs agent, submits answers, and displays results""" | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
try: | |
agent = GAIA_Agent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(f"Agent code URL: {agent_code}") | |
# Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=30) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# Run Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for i, item in enumerate(questions_data): | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
print(f"Processing question {i+1}/{len(questions_data)}") | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
"Submitted Answer": submitted_answer | |
}) | |
# Clean up memory periodically | |
if i % 5 == 0: | |
gc.collect() | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
error_answer = f"AGENT ERROR: {str(e)}" | |
answers_payload.append({"task_id": task_id, "submitted_answer": error_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
"Submitted Answer": error_answer | |
}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# Prepare Submission | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=120) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Gradio Interface --- | |
with gr.Blocks(title="GAIA Agent Evaluation") as demo: | |
gr.Markdown("# GAIA Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Log in to your Hugging Face account using the button below | |
2. Click 'Run Evaluation & Submit All Answers' to start the evaluation | |
3. View results and score in the output sections | |
**Agent Information:** | |
- Model: Phi-3-mini-4k-instruct (CPU optimized) | |
- Tools: Web Search, Calculator, PDF Reader, Webpage Reader | |
- Max Steps: 6 per question | |
- Memory: Optimized for 2vCPU/16GB environment | |
""" | |
) | |
with gr.Row(): | |
gr.LoginButton() | |
with gr.Row(): | |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary", size="lg") | |
with gr.Row(): | |
status_output = gr.Textbox( | |
label="Evaluation Status & Submission Result", | |
lines=5, | |
interactive=False, | |
placeholder="Click the button above to start evaluation..." | |
) | |
with gr.Row(): | |
results_table = gr.DataFrame( | |
label="Questions and Agent Answers", | |
wrap=True, | |
interactive=False | |
) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table], | |
show_progress=True | |
) | |
if __name__ == "__main__": | |
print("\n" + "="*50) | |
print("GAIA Agent Evaluation System Starting") | |
print("="*50) | |
space_host = os.getenv("SPACE_HOST") | |
space_id = os.getenv("SPACE_ID") | |
if space_host: | |
print(f"✅ SPACE_HOST found: {space_host}") | |
else: | |
print("⚠️ SPACE_HOST not found") | |
if space_id: | |
print(f"✅ SPACE_ID found: {space_id}") | |
else: | |
print("⚠️ SPACE_ID not found") | |
print("="*50) | |
print("Launching Gradio Interface...") | |
demo.launch( | |
debug=False, # Disable debug in production | |
share=False, | |
server_name="0.0.0.0", | |
server_port=7860, | |
show_error=True | |
) |