LamiaYT's picture
Fixing
8c139ea
raw
history blame
17.1 kB
import os
import gradio as gr
import requests
import json
import re
import numexpr
import pandas as pd
import math
import pdfminer
from duckduckgo_search import DDGS
from pdfminer.high_level import extract_text
from bs4 import BeautifulSoup
import html2text
from typing import Dict, Any, List, Tuple, Callable, Optional
from dotenv import load_dotenv
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
import time
import gc
# --- Load Environment Variables ---
load_dotenv()
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_STEPS = 6
MAX_TOKENS = 256
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
# --- Configure Environment for Hugging Face Spaces ---
os.environ["PIP_BREAK_SYSTEM_PACKAGES"] = "1"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
print("Loading model (CPU-compatible)...")
start_time = time.time()
# Load model with explicit configuration for better compatibility
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32, # Use float32 for CPU compatibility
device_map="cpu", # Explicitly set to CPU
low_cpu_mem_usage=True, # Optimize for low memory usage
use_cache=False # Disable cache to avoid DynamicCache issues
)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
use_fast=False,
trust_remote_code=True
)
# Ensure pad token is set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
load_time = time.time() - start_time
print(f"Model loaded in {load_time:.2f} seconds")
# --- Tools for GAIA Agent ---
def web_search(query: str) -> str:
"""Search the web using DuckDuckGo or Serper API"""
try:
if SERPER_API_KEY:
# Use Serper API if key is available
params = {
'q': query,
'num': 3,
'hl': 'en',
'gl': 'us'
}
headers = {
'X-API-KEY': SERPER_API_KEY,
'Content-Type': 'application/json'
}
response = requests.post(
'https://google.serper.dev/search',
headers=headers,
json=params,
timeout=10
)
results = response.json()
if 'organic' in results:
return json.dumps([r['title'] + ": " + r['snippet'] for r in results['organic'][:3]])
return "No results found"
else:
# Fallback to DuckDuckGo
with DDGS() as ddgs:
results = [r for r in ddgs.text(query, max_results=3)]
return json.dumps([r['title'] + ": " + r['body'] for r in results])
except Exception as e:
return f"Search error: {str(e)}"
def calculator(expression: str) -> str:
"""Evaluate mathematical expressions safely"""
try:
# Clean the expression
expression = re.sub(r'[^\d+\-*/().\s]', '', expression)
result = numexpr.evaluate(expression)
return str(result)
except Exception as e:
return f"Calculation error: {str(e)}"
def read_pdf(file_path: str) -> str:
"""Extract text from PDF files"""
try:
text = extract_text(file_path)
return text[:2000] if text else "No text found in PDF"
except Exception as e:
return f"PDF read error: {str(e)}"
def read_webpage(url: str) -> str:
"""Fetch and extract text from web pages"""
try:
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
response = requests.get(url, timeout=10, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Remove script and style elements
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text(separator=' ', strip=True)
return text[:2000] if text else "No text found on webpage"
except Exception as e:
return f"Webpage read error: {str(e)}"
TOOLS = {
"web_search": web_search,
"calculator": calculator,
"read_pdf": read_pdf,
"read_webpage": read_webpage
}
# --- GAIA Agent Implementation ---
class GAIA_Agent:
def __init__(self):
self.tools = TOOLS
self.history = []
self.system_prompt = (
"You are an expert GAIA problem solver. Use these tools: {web_search, calculator, read_pdf, read_webpage}.\n"
"Guidelines:\n"
"1. Think step-by-step. Explain reasoning\n"
"2. Use tools for calculations, searches, or file operations\n"
"3. Tools must be called as: ```json\n{'tool': 'tool_name', 'args': {'arg1': value}}```\n"
"4. Final Answer must be exact and standalone\n\n"
"Example:\n"
"Question: \"What's the population density of France? (File: france_data.pdf)\"\n"
"Thought: Need population and area. Read PDF first.\n"
"Action: ```json\n{'tool': 'read_pdf', 'args': {'file_path': 'france_data.pdf'}}```\n"
"Observation: Population: 67.8M, Area: 643,801 km²\n"
"Thought: Now calculate density: 67,800,000 / 643,801\n"
"Action: ```json\n{'tool': 'calculator', 'args': {'expression': '67800000 / 643801'}}```\n"
"Observation: 105.32\n"
"Final Answer: 105.32 people/km²"
)
def __call__(self, question: str) -> str:
print(f"\nProcessing: {question[:80]}...")
self.history = [f"Question: {question}"]
try:
for step in range(MAX_STEPS):
prompt = self._build_prompt()
response = self._call_model(prompt)
if "Final Answer" in response:
answer = response.split("Final Answer:")[-1].strip()
print(f"Final Answer: {answer}")
return answer
tool_call = self._parse_tool_call(response)
if tool_call:
tool_name, args = tool_call
observation = self._use_tool(tool_name, args)
self.history.append(f"Observation: {observation}")
else:
self.history.append(f"Thought: {response}")
# Clean up memory after each step
if step % 2 == 0:
gc.collect()
return "Agent couldn't find solution within step limit"
except Exception as e:
print(f"Error in agent execution: {str(e)}")
return f"Agent error: {str(e)}"
def _build_prompt(self) -> str:
prompt = "<|system|>\n" + self.system_prompt + "<|end|>\n"
prompt += "<|user|>\n" + "\n".join(self.history) + "<|end|>\n"
prompt += "<|assistant|>"
return prompt
def _call_model(self, prompt: str) -> str:
start_time = time.time()
try:
# Tokenize input
inputs = tokenizer(
prompt,
return_tensors="pt",
return_attention_mask=True,
truncation=True,
max_length=3072 # Leave room for generation
)
# Move to same device as model
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# Create generation config
generation_config = GenerationConfig(
max_new_tokens=MAX_TOKENS,
temperature=0.01,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=False # Disable cache to avoid DynamicCache issues
)
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
generation_config=generation_config
)
# Decode response
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = full_response.split("<|assistant|>")[-1].strip()
gen_time = time.time() - start_time
print(f"Generated {len(response)} tokens in {gen_time:.2f}s: {response[:60]}...")
# Clean up
del inputs, outputs
gc.collect()
return response
except Exception as e:
print(f"Model generation error: {str(e)}")
return f"Generation error: {str(e)}"
def _parse_tool_call(self, text: str) -> Optional[Tuple[str, Dict]]:
try:
json_match = re.search(r'```json\s*({.*?})\s*```', text, re.DOTALL)
if json_match:
tool_call = json.loads(json_match.group(1))
if "tool" in tool_call and "args" in tool_call:
return tool_call["tool"], tool_call["args"]
except Exception as e:
print(f"Tool parse error: {str(e)}")
return None
def _use_tool(self, tool_name: str, args: Dict) -> str:
if tool_name not in self.tools:
return f"Error: Unknown tool {tool_name}"
print(f"Using tool: {tool_name}({args})")
try:
start_time = time.time()
result = self.tools[tool_name](**args)
exec_time = time.time() - start_time
print(f"Tool executed in {exec_time:.2f}s")
return str(result)[:500] # Truncate long outputs
except Exception as e:
return f"Tool error: {str(e)}"
# --- Evaluation Runner ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fetches questions, runs agent, submits answers, and displays results"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GAIA_Agent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
# Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=30)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# Run Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
print(f"Processing question {i+1}/{len(questions_data)}")
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": submitted_answer
})
# Clean up memory periodically
if i % 5 == 0:
gc.collect()
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
error_answer = f"AGENT ERROR: {str(e)}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_answer
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Gradio Interface ---
with gr.Blocks(title="GAIA Agent Evaluation") as demo:
gr.Markdown("# GAIA Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below
2. Click 'Run Evaluation & Submit All Answers' to start the evaluation
3. View results and score in the output sections
**Agent Information:**
- Model: Phi-3-mini-4k-instruct (CPU optimized)
- Tools: Web Search, Calculator, PDF Reader, Webpage Reader
- Max Steps: 6 per question
- Memory: Optimized for 2vCPU/16GB environment
"""
)
with gr.Row():
gr.LoginButton()
with gr.Row():
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary", size="lg")
with gr.Row():
status_output = gr.Textbox(
label="Evaluation Status & Submission Result",
lines=5,
interactive=False,
placeholder="Click the button above to start evaluation..."
)
with gr.Row():
results_table = gr.DataFrame(
label="Questions and Agent Answers",
wrap=True,
interactive=False
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table],
show_progress=True
)
if __name__ == "__main__":
print("\n" + "="*50)
print("GAIA Agent Evaluation System Starting")
print("="*50)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
else:
print("⚠️ SPACE_HOST not found")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
else:
print("⚠️ SPACE_ID not found")
print("="*50)
print("Launching Gradio Interface...")
demo.launch(
debug=False, # Disable debug in production
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)