File size: 17,148 Bytes
574b6ca
 
 
d591a7a
086b425
d591a7a
 
0f20e93
d591a7a
 
 
 
 
8c139ea
9f29ca9
8c139ea
f0b3f91
 
8c139ea
 
9f29ca9
 
 
757ebd9
d591a7a
3db6293
9f29ca9
 
 
 
 
 
 
 
e80aab9
f0b3f91
 
9f29ca9
8c139ea
d591a7a
 
f0b3f91
8c139ea
 
 
 
 
 
 
 
 
 
d591a7a
25405da
8c139ea
 
 
9f29ca9
d591a7a
 
 
 
 
9f29ca9
d591a7a
9f29ca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c139ea
 
9f29ca9
 
 
 
 
 
 
 
 
 
d591a7a
 
 
 
 
 
8c139ea
 
 
 
d591a7a
 
 
 
 
 
8c139ea
 
d591a7a
 
 
 
 
 
8c139ea
 
 
 
 
d591a7a
8c139ea
 
 
 
 
 
 
d591a7a
 
 
 
 
 
 
 
 
 
 
 
bbb34b9
d591a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f20e93
8c139ea
 
 
 
c66203c
8c139ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d591a7a
 
9f29ca9
d591a7a
 
 
 
 
 
9f29ca9
8c139ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d591a7a
8c139ea
d591a7a
 
 
 
8c139ea
 
e2bf8cd
d591a7a
 
a8701c2
d591a7a
 
 
529a4e1
d591a7a
 
 
 
 
 
 
 
 
03ca047
d591a7a
 
9f29ca9
 
d591a7a
 
9f29ca9
d591a7a
c66203c
d591a7a
 
c66203c
d591a7a
 
 
 
f96a820
9f29ca9
31243f4
d591a7a
 
9f29ca9
d591a7a
8c139ea
d591a7a
9f29ca9
d591a7a
eccf8e4
8c139ea
c66203c
d591a7a
 
9f29ca9
 
d591a7a
 
 
 
a39e119
d591a7a
 
 
9f29ca9
d591a7a
 
 
8c139ea
 
bbb34b9
d591a7a
8c139ea
d591a7a
 
f96a820
8c139ea
086b425
8c139ea
d591a7a
 
8c139ea
 
 
 
 
 
 
 
 
 
03ca047
9f29ca9
8c139ea
 
 
 
 
 
 
d591a7a
 
 
 
 
9f29ca9
 
 
 
 
 
d591a7a
 
 
9f29ca9
d591a7a
e80aab9
8c139ea
d591a7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7963312
d591a7a
 
 
 
 
9f29ca9
8c139ea
9f29ca9
d591a7a
 
 
8c139ea
 
 
9f29ca9
8c139ea
 
9f29ca9
8c139ea
 
d591a7a
 
7963312
8c139ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f29ca9
d591a7a
 
8c139ea
 
bbb34b9
e80aab9
 
8c139ea
 
 
 
9f29ca9
 
 
 
 
8c139ea
 
 
9f29ca9
 
8c139ea
 
9f29ca9
8c139ea
9f29ca9
8c139ea
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import os
import gradio as gr
import requests
import json
import re
import numexpr
import pandas as pd
import math
import pdfminer
from duckduckgo_search import DDGS
from pdfminer.high_level import extract_text
from bs4 import BeautifulSoup
import html2text
from typing import Dict, Any, List, Tuple, Callable, Optional
from dotenv import load_dotenv
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
import time
import gc

# --- Load Environment Variables ---
load_dotenv()
SERPER_API_KEY = os.getenv("SERPER_API_KEY")

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_STEPS = 6
MAX_TOKENS = 256
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"

# --- Configure Environment for Hugging Face Spaces ---
os.environ["PIP_BREAK_SYSTEM_PACKAGES"] = "1"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
os.environ["BITSANDBYTES_NOWELCOME"] = "1"

print("Loading model (CPU-compatible)...")
start_time = time.time()

# Load model with explicit configuration for better compatibility
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    trust_remote_code=True,
    torch_dtype=torch.float32,  # Use float32 for CPU compatibility
    device_map="cpu",  # Explicitly set to CPU
    low_cpu_mem_usage=True,  # Optimize for low memory usage
    use_cache=False  # Disable cache to avoid DynamicCache issues
)

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME, 
    use_fast=False,
    trust_remote_code=True
)

# Ensure pad token is set
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

load_time = time.time() - start_time
print(f"Model loaded in {load_time:.2f} seconds")

# --- Tools for GAIA Agent ---
def web_search(query: str) -> str:
    """Search the web using DuckDuckGo or Serper API"""
    try:
        if SERPER_API_KEY:
            # Use Serper API if key is available
            params = {
                'q': query,
                'num': 3,
                'hl': 'en',
                'gl': 'us'
            }
            headers = {
                'X-API-KEY': SERPER_API_KEY,
                'Content-Type': 'application/json'
            }
            response = requests.post(
                'https://google.serper.dev/search',
                headers=headers,
                json=params,
                timeout=10
            )
            results = response.json()
            if 'organic' in results:
                return json.dumps([r['title'] + ": " + r['snippet'] for r in results['organic'][:3]])
            return "No results found"
        else:
            # Fallback to DuckDuckGo
            with DDGS() as ddgs:
                results = [r for r in ddgs.text(query, max_results=3)]
                return json.dumps([r['title'] + ": " + r['body'] for r in results])
    except Exception as e:
        return f"Search error: {str(e)}"

def calculator(expression: str) -> str:
    """Evaluate mathematical expressions safely"""
    try:
        # Clean the expression
        expression = re.sub(r'[^\d+\-*/().\s]', '', expression)
        result = numexpr.evaluate(expression)
        return str(result)
    except Exception as e:
        return f"Calculation error: {str(e)}"

def read_pdf(file_path: str) -> str:
    """Extract text from PDF files"""
    try:
        text = extract_text(file_path)
        return text[:2000] if text else "No text found in PDF"
    except Exception as e:
        return f"PDF read error: {str(e)}"

def read_webpage(url: str) -> str:
    """Fetch and extract text from web pages"""
    try:
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
        }
        response = requests.get(url, timeout=10, headers=headers)
        response.raise_for_status()
        soup = BeautifulSoup(response.text, 'html.parser')
        
        # Remove script and style elements
        for script in soup(["script", "style"]):
            script.decompose()
            
        text = soup.get_text(separator=' ', strip=True)
        return text[:2000] if text else "No text found on webpage"
    except Exception as e:
        return f"Webpage read error: {str(e)}"

TOOLS = {
    "web_search": web_search,
    "calculator": calculator,
    "read_pdf": read_pdf,
    "read_webpage": read_webpage
}

# --- GAIA Agent Implementation ---
class GAIA_Agent:
    def __init__(self):
        self.tools = TOOLS
        self.history = []
        self.system_prompt = (
            "You are an expert GAIA problem solver. Use these tools: {web_search, calculator, read_pdf, read_webpage}.\n"
            "Guidelines:\n"
            "1. Think step-by-step. Explain reasoning\n"
            "2. Use tools for calculations, searches, or file operations\n"
            "3. Tools must be called as: ```json\n{'tool': 'tool_name', 'args': {'arg1': value}}```\n"
            "4. Final Answer must be exact and standalone\n\n"
            "Example:\n"
            "Question: \"What's the population density of France? (File: france_data.pdf)\"\n"
            "Thought: Need population and area. Read PDF first.\n"
            "Action: ```json\n{'tool': 'read_pdf', 'args': {'file_path': 'france_data.pdf'}}```\n"
            "Observation: Population: 67.8M, Area: 643,801 km²\n"
            "Thought: Now calculate density: 67,800,000 / 643,801\n"
            "Action: ```json\n{'tool': 'calculator', 'args': {'expression': '67800000 / 643801'}}```\n"
            "Observation: 105.32\n"
            "Final Answer: 105.32 people/km²"
        )

    def __call__(self, question: str) -> str:
        print(f"\nProcessing: {question[:80]}...")
        self.history = [f"Question: {question}"]
        
        try:
            for step in range(MAX_STEPS):
                prompt = self._build_prompt()
                response = self._call_model(prompt)
                
                if "Final Answer" in response:
                    answer = response.split("Final Answer:")[-1].strip()
                    print(f"Final Answer: {answer}")
                    return answer
                    
                tool_call = self._parse_tool_call(response)
                if tool_call:
                    tool_name, args = tool_call
                    observation = self._use_tool(tool_name, args)
                    self.history.append(f"Observation: {observation}")
                else:
                    self.history.append(f"Thought: {response}")
                    
                # Clean up memory after each step
                if step % 2 == 0:
                    gc.collect()
            
            return "Agent couldn't find solution within step limit"
            
        except Exception as e:
            print(f"Error in agent execution: {str(e)}")
            return f"Agent error: {str(e)}"

    def _build_prompt(self) -> str:
        prompt = "<|system|>\n" + self.system_prompt + "<|end|>\n"
        prompt += "<|user|>\n" + "\n".join(self.history) + "<|end|>\n"
        prompt += "<|assistant|>"
        return prompt

    def _call_model(self, prompt: str) -> str:
        start_time = time.time()
        
        try:
            # Tokenize input
            inputs = tokenizer(
                prompt, 
                return_tensors="pt", 
                return_attention_mask=True,
                truncation=True,
                max_length=3072  # Leave room for generation
            )
            
            # Move to same device as model
            inputs = {k: v.to(model.device) for k, v in inputs.items()}
            
            # Create generation config
            generation_config = GenerationConfig(
                max_new_tokens=MAX_TOKENS,
                temperature=0.01,
                do_sample=True,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id,
                use_cache=False  # Disable cache to avoid DynamicCache issues
            )
            
            # Generate response
            with torch.no_grad():
                outputs = model.generate(
                    **inputs,
                    generation_config=generation_config
                )
            
            # Decode response
            full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
            response = full_response.split("<|assistant|>")[-1].strip()
            
            gen_time = time.time() - start_time
            print(f"Generated {len(response)} tokens in {gen_time:.2f}s: {response[:60]}...")
            
            # Clean up
            del inputs, outputs
            gc.collect()
            
            return response
            
        except Exception as e:
            print(f"Model generation error: {str(e)}")
            return f"Generation error: {str(e)}"

    def _parse_tool_call(self, text: str) -> Optional[Tuple[str, Dict]]:
        try:
            json_match = re.search(r'```json\s*({.*?})\s*```', text, re.DOTALL)
            if json_match:
                tool_call = json.loads(json_match.group(1))
                if "tool" in tool_call and "args" in tool_call:
                    return tool_call["tool"], tool_call["args"]
        except Exception as e:
            print(f"Tool parse error: {str(e)}")
        return None

    def _use_tool(self, tool_name: str, args: Dict) -> str:
        if tool_name not in self.tools:
            return f"Error: Unknown tool {tool_name}"
        
        print(f"Using tool: {tool_name}({args})")
        try:
            start_time = time.time()
            result = self.tools[tool_name](**args)
            exec_time = time.time() - start_time
            print(f"Tool executed in {exec_time:.2f}s")
            return str(result)[:500]  # Truncate long outputs
        except Exception as e:
            return f"Tool error: {str(e)}"

# --- Evaluation Runner ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """Fetches questions, runs agent, submits answers, and displays results"""
    space_id = os.getenv("SPACE_ID")
    
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = GAIA_Agent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code URL: {agent_code}")

    # Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=30)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # Run Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
            
        try:
            print(f"Processing question {i+1}/{len(questions_data)}")
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, 
                "Submitted Answer": submitted_answer
            })
            
            # Clean up memory periodically
            if i % 5 == 0:
                gc.collect()
                
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            error_answer = f"AGENT ERROR: {str(e)}"
            answers_payload.append({"task_id": task_id, "submitted_answer": error_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, 
                "Submitted Answer": error_answer
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Prepare Submission
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=120)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Gradio Interface ---
with gr.Blocks(title="GAIA Agent Evaluation") as demo:
    gr.Markdown("# GAIA Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Log in to your Hugging Face account using the button below
        2. Click 'Run Evaluation & Submit All Answers' to start the evaluation
        3. View results and score in the output sections
        
        **Agent Information:**
        - Model: Phi-3-mini-4k-instruct (CPU optimized)
        - Tools: Web Search, Calculator, PDF Reader, Webpage Reader
        - Max Steps: 6 per question
        - Memory: Optimized for 2vCPU/16GB environment
        """
    )

    with gr.Row():
        gr.LoginButton()
    
    with gr.Row():
        run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary", size="lg")
    
    with gr.Row():
        status_output = gr.Textbox(
            label="Evaluation Status & Submission Result", 
            lines=5, 
            interactive=False,
            placeholder="Click the button above to start evaluation..."
        )
    
    with gr.Row():
        results_table = gr.DataFrame(
            label="Questions and Agent Answers", 
            wrap=True,
            interactive=False
        )
    
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table],
        show_progress=True
    )

if __name__ == "__main__":
    print("\n" + "="*50)
    print("GAIA Agent Evaluation System Starting")
    print("="*50)
    
    space_host = os.getenv("SPACE_HOST")
    space_id = os.getenv("SPACE_ID")
    
    if space_host:
        print(f"✅ SPACE_HOST found: {space_host}")
    else:
        print("⚠️  SPACE_HOST not found")
        
    if space_id:
        print(f"✅ SPACE_ID found: {space_id}")
    else:
        print("⚠️  SPACE_ID not found")
    
    print("="*50)
    print("Launching Gradio Interface...")
    demo.launch(
        debug=False,  # Disable debug in production
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )