Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Fix
Browse files- app.py +109 -105
- requirements.txt +16 -11
- run.py +592 -6
    	
        app.py
    CHANGED
    
    | @@ -6,42 +6,86 @@ import re | |
| 6 | 
             
            import numexpr
         | 
| 7 | 
             
            import pandas as pd
         | 
| 8 | 
             
            import time
         | 
|  | |
| 9 | 
             
            import math
         | 
| 10 | 
             
            import pdfminer
         | 
| 11 | 
            -
            from  | 
| 12 | 
             
            from duckduckgo_search import DDGS
         | 
| 13 | 
             
            from pdfminer.high_level import extract_text
         | 
| 14 | 
             
            from bs4 import BeautifulSoup
         | 
| 15 | 
             
            import html2text
         | 
| 16 | 
             
            from typing import Dict, Any, List, Tuple, Callable
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 17 |  | 
| 18 | 
             
            # --- Constants ---
         | 
| 19 | 
             
            DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
         | 
| 20 | 
            -
            MAX_STEPS = 6 | 
| 21 | 
            -
            MAX_TOKENS = 256 | 
| 22 | 
            -
            MODEL_NAME = " | 
| 23 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 24 |  | 
| 25 | 
             
            # --- Load Quantized Model ---
         | 
| 26 | 
             
            print("Loading quantized model...")
         | 
| 27 | 
             
            start_time = time.time()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 28 | 
             
            model = AutoModelForCausalLM.from_pretrained(
         | 
| 29 | 
             
                MODEL_NAME,
         | 
| 30 | 
            -
                 | 
| 31 | 
            -
                 | 
| 32 | 
            -
                 | 
| 33 | 
            -
                context_length=4096
         | 
| 34 | 
             
            )
         | 
|  | |
|  | |
| 35 | 
             
            load_time = time.time() - start_time
         | 
| 36 | 
             
            print(f"Model loaded in {load_time:.2f} seconds")
         | 
| 37 |  | 
| 38 | 
             
            # --- Tools for GAIA Agent ---
         | 
| 39 | 
             
            def web_search(query: str) -> str:
         | 
| 40 | 
            -
                """Search the web using DuckDuckGo"""
         | 
| 41 | 
             
                try:
         | 
| 42 | 
            -
                     | 
| 43 | 
            -
                         | 
| 44 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 45 | 
             
                except Exception as e:
         | 
| 46 | 
             
                    return f"Search error: {str(e)}"
         | 
| 47 |  | 
| @@ -55,7 +99,7 @@ def calculator(expression: str) -> str: | |
| 55 | 
             
            def read_pdf(file_path: str) -> str:
         | 
| 56 | 
             
                """Extract text from PDF files"""
         | 
| 57 | 
             
                try:
         | 
| 58 | 
            -
                    return extract_text(file_path)
         | 
| 59 | 
             
                except Exception as e:
         | 
| 60 | 
             
                    return f"PDF read error: {str(e)}"
         | 
| 61 |  | 
| @@ -122,19 +166,26 @@ class GAIA_Agent: | |
| 122 | 
             
                    return "Agent couldn't find solution within step limit"
         | 
| 123 |  | 
| 124 | 
             
                def _build_prompt(self) -> str:
         | 
| 125 | 
            -
                    prompt =  | 
| 126 | 
             
                    prompt += "<|user|>\n" + "\n".join(self.history) + "<|end|>\n"
         | 
| 127 | 
             
                    prompt += "<|assistant|>"
         | 
| 128 | 
             
                    return prompt
         | 
| 129 |  | 
| 130 | 
             
                def _call_model(self, prompt: str) -> str:
         | 
| 131 | 
             
                    start_time = time.time()
         | 
| 132 | 
            -
                     | 
| 133 | 
            -
             | 
|  | |
|  | |
| 134 | 
             
                        max_new_tokens=MAX_TOKENS,
         | 
| 135 | 
             
                        temperature=0.01,
         | 
| 136 | 
            -
                         | 
|  | |
| 137 | 
             
                    )
         | 
|  | |
|  | |
|  | |
|  | |
| 138 | 
             
                    gen_time = time.time() - start_time
         | 
| 139 | 
             
                    print(f"Generated {len(response)} tokens in {gen_time:.2f}s: {response[:60]}...")
         | 
| 140 | 
             
                    return response
         | 
| @@ -165,34 +216,11 @@ class GAIA_Agent: | |
| 165 |  | 
| 166 | 
             
            # --- Evaluation Runner ---
         | 
| 167 | 
             
            def run_and_submit_all(profile: gr.OAuthProfile | None):
         | 
| 168 | 
            -
                 | 
| 169 | 
            -
                 | 
| 170 | 
            -
                try:
         | 
| 171 | 
            -
                    agent = GAIA_Agent()  # Use our custom agent
         | 
| 172 | 
            -
                except Exception as e:
         | 
| 173 | 
            -
                    print(f"Error instantiating agent: {e}")
         | 
| 174 | 
            -
                    return f"Error initializing agent: {e}", None
         | 
| 175 | 
            -
                # ... [rest of the function remains unchanged] ...
         | 
| 176 | 
            -
             | 
| 177 | 
            -
            # --- Gradio Interface ---
         | 
| 178 | 
            -
            with gr.Blocks() as demo:
         | 
| 179 | 
            -
                # ... [Keep the original Gradio interface] ...
         | 
| 180 | 
            -
                # Only add resource monitoring:
         | 
| 181 | 
            -
                gr.Markdown(f"**Resource Info:** Using {MODEL_FILE} | Max steps: {MAX_STEPS} | Max tokens: {MAX_TOKENS}")
         | 
| 182 |  | 
| 183 | 
            -
                # Add a clear button for history
         | 
| 184 | 
            -
                clear_btn = gr.Button("Clear History")
         | 
| 185 | 
            -
                clear_btn.click(lambda: [None, None], outputs=[status_output, results_table])
         | 
| 186 | 
            -
            def run_and_submit_all( profile: gr.OAuthProfile | None):
         | 
| 187 | 
            -
                """
         | 
| 188 | 
            -
                Fetches all questions, runs the BasicAgent on them, submits all answers,
         | 
| 189 | 
            -
                and displays the results.
         | 
| 190 | 
            -
                """
         | 
| 191 | 
            -
                # --- Determine HF Space Runtime URL and Repo URL ---
         | 
| 192 | 
            -
                space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
         | 
| 193 | 
            -
             | 
| 194 | 
             
                if profile:
         | 
| 195 | 
            -
                    username= f"{profile.username}"
         | 
| 196 | 
             
                    print(f"User logged in: {username}")
         | 
| 197 | 
             
                else:
         | 
| 198 | 
             
                    print("User not logged in.")
         | 
| @@ -202,38 +230,33 @@ def run_and_submit_all( profile: gr.OAuthProfile | None): | |
| 202 | 
             
                questions_url = f"{api_url}/questions"
         | 
| 203 | 
             
                submit_url = f"{api_url}/submit"
         | 
| 204 |  | 
| 205 | 
            -
                # 1. Instantiate Agent ( modify this part to create your agent)
         | 
| 206 | 
             
                try:
         | 
| 207 | 
            -
                    agent =  | 
| 208 | 
             
                except Exception as e:
         | 
| 209 | 
             
                    print(f"Error instantiating agent: {e}")
         | 
| 210 | 
             
                    return f"Error initializing agent: {e}", None
         | 
| 211 | 
            -
             | 
| 212 | 
             
                agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
         | 
| 213 | 
             
                print(agent_code)
         | 
| 214 |  | 
| 215 | 
            -
                #  | 
| 216 | 
             
                print(f"Fetching questions from: {questions_url}")
         | 
| 217 | 
             
                try:
         | 
| 218 | 
             
                    response = requests.get(questions_url, timeout=15)
         | 
| 219 | 
             
                    response.raise_for_status()
         | 
| 220 | 
             
                    questions_data = response.json()
         | 
| 221 | 
             
                    if not questions_data:
         | 
| 222 | 
            -
             | 
| 223 | 
            -
             | 
| 224 | 
             
                    print(f"Fetched {len(questions_data)} questions.")
         | 
| 225 | 
             
                except requests.exceptions.RequestException as e:
         | 
| 226 | 
             
                    print(f"Error fetching questions: {e}")
         | 
| 227 | 
             
                    return f"Error fetching questions: {e}", None
         | 
| 228 | 
            -
                except requests.exceptions.JSONDecodeError as e:
         | 
| 229 | 
            -
                     print(f"Error decoding JSON response from questions endpoint: {e}")
         | 
| 230 | 
            -
                     print(f"Response text: {response.text[:500]}")
         | 
| 231 | 
            -
                     return f"Error decoding server response for questions: {e}", None
         | 
| 232 | 
             
                except Exception as e:
         | 
| 233 | 
             
                    print(f"An unexpected error occurred fetching questions: {e}")
         | 
| 234 | 
             
                    return f"An unexpected error occurred fetching questions: {e}", None
         | 
| 235 |  | 
| 236 | 
            -
                #  | 
| 237 | 
             
                results_log = []
         | 
| 238 | 
             
                answers_payload = []
         | 
| 239 | 
             
                print(f"Running agent on {len(questions_data)} questions...")
         | 
| @@ -248,19 +271,23 @@ def run_and_submit_all( profile: gr.OAuthProfile | None): | |
| 248 | 
             
                        answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
         | 
| 249 | 
             
                        results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
         | 
| 250 | 
             
                    except Exception as e:
         | 
| 251 | 
            -
             | 
| 252 | 
            -
             | 
| 253 |  | 
| 254 | 
             
                if not answers_payload:
         | 
| 255 | 
             
                    print("Agent did not produce any answers to submit.")
         | 
| 256 | 
             
                    return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
         | 
| 257 |  | 
| 258 | 
            -
                #  | 
| 259 | 
            -
                submission_data = { | 
|  | |
|  | |
|  | |
|  | |
| 260 | 
             
                status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
         | 
| 261 | 
             
                print(status_update)
         | 
| 262 |  | 
| 263 | 
            -
                #  | 
| 264 | 
             
                print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
         | 
| 265 | 
             
                try:
         | 
| 266 | 
             
                    response = requests.post(submit_url, json=submission_data, timeout=60)
         | 
| @@ -287,47 +314,34 @@ def run_and_submit_all( profile: gr.OAuthProfile | None): | |
| 287 | 
             
                    print(status_message)
         | 
| 288 | 
             
                    results_df = pd.DataFrame(results_log)
         | 
| 289 | 
             
                    return status_message, results_df
         | 
| 290 | 
            -
                except requests.exceptions.Timeout:
         | 
| 291 | 
            -
                    status_message = "Submission Failed: The request timed out."
         | 
| 292 | 
            -
                    print(status_message)
         | 
| 293 | 
            -
                    results_df = pd.DataFrame(results_log)
         | 
| 294 | 
            -
                    return status_message, results_df
         | 
| 295 | 
            -
                except requests.exceptions.RequestException as e:
         | 
| 296 | 
            -
                    status_message = f"Submission Failed: Network error - {e}"
         | 
| 297 | 
            -
                    print(status_message)
         | 
| 298 | 
            -
                    results_df = pd.DataFrame(results_log)
         | 
| 299 | 
            -
                    return status_message, results_df
         | 
| 300 | 
             
                except Exception as e:
         | 
| 301 | 
             
                    status_message = f"An unexpected error occurred during submission: {e}"
         | 
| 302 | 
             
                    print(status_message)
         | 
| 303 | 
             
                    results_df = pd.DataFrame(results_log)
         | 
| 304 | 
             
                    return status_message, results_df
         | 
| 305 |  | 
| 306 | 
            -
             | 
| 307 | 
            -
            # --- Build Gradio Interface using Blocks ---
         | 
| 308 | 
             
            with gr.Blocks() as demo:
         | 
| 309 | 
            -
                gr.Markdown("#  | 
| 310 | 
             
                gr.Markdown(
         | 
| 311 | 
             
                    """
         | 
| 312 | 
             
                    **Instructions:**
         | 
| 313 | 
            -
                    1. | 
| 314 | 
            -
                    2. | 
| 315 | 
            -
                    3. | 
| 316 | 
            -
                     | 
| 317 | 
            -
                    ** | 
| 318 | 
            -
                     | 
| 319 | 
            -
                     | 
|  | |
| 320 | 
             
                    """
         | 
| 321 | 
             
                )
         | 
| 322 |  | 
| 323 | 
             
                gr.LoginButton()
         | 
| 324 | 
            -
             | 
| 325 | 
            -
                run_button = gr.Button("Run Evaluation & Submit All Answers")
         | 
| 326 | 
            -
             | 
| 327 | 
             
                status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
         | 
| 328 | 
            -
                # Removed max_rows=10 from DataFrame constructor
         | 
| 329 | 
             
                results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
         | 
| 330 | 
            -
             | 
| 331 | 
             
                run_button.click(
         | 
| 332 | 
             
                    fn=run_and_submit_all,
         | 
| 333 | 
             
                    outputs=[status_output, results_table]
         | 
| @@ -335,24 +349,14 @@ with gr.Blocks() as demo: | |
| 335 |  | 
| 336 | 
             
            if __name__ == "__main__":
         | 
| 337 | 
             
                print("\n" + "-"*30 + " App Starting " + "-"*30)
         | 
| 338 | 
            -
                 | 
| 339 | 
            -
                 | 
| 340 | 
            -
                 | 
| 341 | 
            -
             | 
| 342 | 
            -
             | 
| 343 | 
            -
             | 
| 344 | 
            -
                    print(f" | 
| 345 | 
            -
                 | 
| 346 | 
            -
                    print("โน๏ธ  SPACE_HOST environment variable not found (running locally?).")
         | 
| 347 | 
            -
             | 
| 348 | 
            -
                if space_id_startup: # Print repo URLs if SPACE_ID is found
         | 
| 349 | 
            -
                    print(f"โ
 SPACE_ID found: {space_id_startup}")
         | 
| 350 | 
            -
                    print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
         | 
| 351 | 
            -
                    print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
         | 
| 352 | 
            -
                else:
         | 
| 353 | 
            -
                    print("โน๏ธ  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
         | 
| 354 | 
            -
             | 
| 355 | 
             
                print("-"*(60 + len(" App Starting ")) + "\n")
         | 
| 356 | 
            -
             | 
| 357 | 
            -
                 | 
| 358 | 
            -
                demo.launch(debug=True, share=False)   
         | 
|  | |
| 6 | 
             
            import numexpr
         | 
| 7 | 
             
            import pandas as pd
         | 
| 8 | 
             
            import time
         | 
| 9 | 
            +
            import torch
         | 
| 10 | 
             
            import math
         | 
| 11 | 
             
            import pdfminer
         | 
| 12 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
         | 
| 13 | 
             
            from duckduckgo_search import DDGS
         | 
| 14 | 
             
            from pdfminer.high_level import extract_text
         | 
| 15 | 
             
            from bs4 import BeautifulSoup
         | 
| 16 | 
             
            import html2text
         | 
| 17 | 
             
            from typing import Dict, Any, List, Tuple, Callable
         | 
| 18 | 
            +
            from dotenv import load_dotenv
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            # --- Load Environment Variables ---
         | 
| 21 | 
            +
            load_dotenv()
         | 
| 22 | 
            +
            SERPER_API_KEY = os.getenv("SERPER_API_KEY")
         | 
| 23 |  | 
| 24 | 
             
            # --- Constants ---
         | 
| 25 | 
             
            DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
         | 
| 26 | 
            +
            MAX_STEPS = 6
         | 
| 27 | 
            +
            MAX_TOKENS = 256
         | 
| 28 | 
            +
            MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            # --- Configure Environment for Hugging Face Spaces ---
         | 
| 31 | 
            +
            os.environ["PIP_BREAK_SYSTEM_PACKAGES"] = "1"
         | 
| 32 | 
            +
            os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
         | 
| 33 | 
            +
            os.environ["BITSANDBYTES_NOWELCOME"] = "1"
         | 
| 34 |  | 
| 35 | 
             
            # --- Load Quantized Model ---
         | 
| 36 | 
             
            print("Loading quantized model...")
         | 
| 37 | 
             
            start_time = time.time()
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            # Configure 4-bit quantization
         | 
| 40 | 
            +
            quant_config = BitsAndBytesConfig(
         | 
| 41 | 
            +
                load_in_4bit=True,
         | 
| 42 | 
            +
                bnb_4bit_quant_type="nf4",
         | 
| 43 | 
            +
                bnb_4bit_use_double_quant=True,
         | 
| 44 | 
            +
                bnb_4bit_compute_dtype=torch.bfloat16
         | 
| 45 | 
            +
            )
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            # Load model and tokenizer
         | 
| 48 | 
             
            model = AutoModelForCausalLM.from_pretrained(
         | 
| 49 | 
             
                MODEL_NAME,
         | 
| 50 | 
            +
                device_map="auto",
         | 
| 51 | 
            +
                quantization_config=quant_config,
         | 
| 52 | 
            +
                trust_remote_code=True
         | 
|  | |
| 53 | 
             
            )
         | 
| 54 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
         | 
| 55 | 
            +
             | 
| 56 | 
             
            load_time = time.time() - start_time
         | 
| 57 | 
             
            print(f"Model loaded in {load_time:.2f} seconds")
         | 
| 58 |  | 
| 59 | 
             
            # --- Tools for GAIA Agent ---
         | 
| 60 | 
             
            def web_search(query: str) -> str:
         | 
| 61 | 
            +
                """Search the web using DuckDuckGo or Serper API"""
         | 
| 62 | 
             
                try:
         | 
| 63 | 
            +
                    if SERPER_API_KEY:
         | 
| 64 | 
            +
                        # Use Serper API if key is available
         | 
| 65 | 
            +
                        params = {
         | 
| 66 | 
            +
                            'q': query,
         | 
| 67 | 
            +
                            'num': 3,
         | 
| 68 | 
            +
                            'hl': 'en',
         | 
| 69 | 
            +
                            'gl': 'us'
         | 
| 70 | 
            +
                        }
         | 
| 71 | 
            +
                        headers = {
         | 
| 72 | 
            +
                            'X-API-KEY': SERPER_API_KEY,
         | 
| 73 | 
            +
                            'Content-Type': 'application/json'
         | 
| 74 | 
            +
                        }
         | 
| 75 | 
            +
                        response = requests.post(
         | 
| 76 | 
            +
                            'https://google.serper.dev/search',
         | 
| 77 | 
            +
                            headers=headers,
         | 
| 78 | 
            +
                            json=params
         | 
| 79 | 
            +
                        )
         | 
| 80 | 
            +
                        results = response.json()
         | 
| 81 | 
            +
                        if 'organic' in results:
         | 
| 82 | 
            +
                            return json.dumps([r['title'] + ": " + r['snippet'] for r in results['organic'][:3]])
         | 
| 83 | 
            +
                        return "No results found"
         | 
| 84 | 
            +
                    else:
         | 
| 85 | 
            +
                        # Fallback to DuckDuckGo
         | 
| 86 | 
            +
                        with DDGS() as ddgs:
         | 
| 87 | 
            +
                            results = [r for r in ddgs.text(query, max_results=3)]
         | 
| 88 | 
            +
                            return json.dumps([r['title'] + ": " + r['body'] for r in results])
         | 
| 89 | 
             
                except Exception as e:
         | 
| 90 | 
             
                    return f"Search error: {str(e)}"
         | 
| 91 |  | 
|  | |
| 99 | 
             
            def read_pdf(file_path: str) -> str:
         | 
| 100 | 
             
                """Extract text from PDF files"""
         | 
| 101 | 
             
                try:
         | 
| 102 | 
            +
                    return extract_text(file_path)[:2000]  # Limit to first 2000 characters
         | 
| 103 | 
             
                except Exception as e:
         | 
| 104 | 
             
                    return f"PDF read error: {str(e)}"
         | 
| 105 |  | 
|  | |
| 166 | 
             
                    return "Agent couldn't find solution within step limit"
         | 
| 167 |  | 
| 168 | 
             
                def _build_prompt(self) -> str:
         | 
| 169 | 
            +
                    prompt = "<|system|>\n" + self.system_prompt + "<|end|>\n"
         | 
| 170 | 
             
                    prompt += "<|user|>\n" + "\n".join(self.history) + "<|end|>\n"
         | 
| 171 | 
             
                    prompt += "<|assistant|>"
         | 
| 172 | 
             
                    return prompt
         | 
| 173 |  | 
| 174 | 
             
                def _call_model(self, prompt: str) -> str:
         | 
| 175 | 
             
                    start_time = time.time()
         | 
| 176 | 
            +
                    
         | 
| 177 | 
            +
                    inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=True).to(model.device)
         | 
| 178 | 
            +
                    outputs = model.generate(
         | 
| 179 | 
            +
                        **inputs,
         | 
| 180 | 
             
                        max_new_tokens=MAX_TOKENS,
         | 
| 181 | 
             
                        temperature=0.01,
         | 
| 182 | 
            +
                        do_sample=True,
         | 
| 183 | 
            +
                        pad_token_id=tokenizer.eos_token_id
         | 
| 184 | 
             
                    )
         | 
| 185 | 
            +
                    
         | 
| 186 | 
            +
                    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
         | 
| 187 | 
            +
                    response = response.split("<|assistant|>")[-1].strip()
         | 
| 188 | 
            +
                    
         | 
| 189 | 
             
                    gen_time = time.time() - start_time
         | 
| 190 | 
             
                    print(f"Generated {len(response)} tokens in {gen_time:.2f}s: {response[:60]}...")
         | 
| 191 | 
             
                    return response
         | 
|  | |
| 216 |  | 
| 217 | 
             
            # --- Evaluation Runner ---
         | 
| 218 | 
             
            def run_and_submit_all(profile: gr.OAuthProfile | None):
         | 
| 219 | 
            +
                """Fetches questions, runs agent, submits answers, and displays results"""
         | 
| 220 | 
            +
                space_id = os.getenv("SPACE_ID")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 221 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 222 | 
             
                if profile:
         | 
| 223 | 
            +
                    username = f"{profile.username}"
         | 
| 224 | 
             
                    print(f"User logged in: {username}")
         | 
| 225 | 
             
                else:
         | 
| 226 | 
             
                    print("User not logged in.")
         | 
|  | |
| 230 | 
             
                questions_url = f"{api_url}/questions"
         | 
| 231 | 
             
                submit_url = f"{api_url}/submit"
         | 
| 232 |  | 
|  | |
| 233 | 
             
                try:
         | 
| 234 | 
            +
                    agent = GAIA_Agent()
         | 
| 235 | 
             
                except Exception as e:
         | 
| 236 | 
             
                    print(f"Error instantiating agent: {e}")
         | 
| 237 | 
             
                    return f"Error initializing agent: {e}", None
         | 
| 238 | 
            +
             | 
| 239 | 
             
                agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
         | 
| 240 | 
             
                print(agent_code)
         | 
| 241 |  | 
| 242 | 
            +
                # Fetch Questions
         | 
| 243 | 
             
                print(f"Fetching questions from: {questions_url}")
         | 
| 244 | 
             
                try:
         | 
| 245 | 
             
                    response = requests.get(questions_url, timeout=15)
         | 
| 246 | 
             
                    response.raise_for_status()
         | 
| 247 | 
             
                    questions_data = response.json()
         | 
| 248 | 
             
                    if not questions_data:
         | 
| 249 | 
            +
                        print("Fetched questions list is empty.")
         | 
| 250 | 
            +
                        return "Fetched questions list is empty or invalid format.", None
         | 
| 251 | 
             
                    print(f"Fetched {len(questions_data)} questions.")
         | 
| 252 | 
             
                except requests.exceptions.RequestException as e:
         | 
| 253 | 
             
                    print(f"Error fetching questions: {e}")
         | 
| 254 | 
             
                    return f"Error fetching questions: {e}", None
         | 
|  | |
|  | |
|  | |
|  | |
| 255 | 
             
                except Exception as e:
         | 
| 256 | 
             
                    print(f"An unexpected error occurred fetching questions: {e}")
         | 
| 257 | 
             
                    return f"An unexpected error occurred fetching questions: {e}", None
         | 
| 258 |  | 
| 259 | 
            +
                # Run Agent
         | 
| 260 | 
             
                results_log = []
         | 
| 261 | 
             
                answers_payload = []
         | 
| 262 | 
             
                print(f"Running agent on {len(questions_data)} questions...")
         | 
|  | |
| 271 | 
             
                        answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
         | 
| 272 | 
             
                        results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
         | 
| 273 | 
             
                    except Exception as e:
         | 
| 274 | 
            +
                        print(f"Error running agent on task {task_id}: {e}")
         | 
| 275 | 
            +
                        results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
         | 
| 276 |  | 
| 277 | 
             
                if not answers_payload:
         | 
| 278 | 
             
                    print("Agent did not produce any answers to submit.")
         | 
| 279 | 
             
                    return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
         | 
| 280 |  | 
| 281 | 
            +
                # Prepare Submission
         | 
| 282 | 
            +
                submission_data = {
         | 
| 283 | 
            +
                    "username": username.strip(),
         | 
| 284 | 
            +
                    "agent_code": agent_code,
         | 
| 285 | 
            +
                    "answers": answers_payload
         | 
| 286 | 
            +
                }
         | 
| 287 | 
             
                status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
         | 
| 288 | 
             
                print(status_update)
         | 
| 289 |  | 
| 290 | 
            +
                # Submit
         | 
| 291 | 
             
                print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
         | 
| 292 | 
             
                try:
         | 
| 293 | 
             
                    response = requests.post(submit_url, json=submission_data, timeout=60)
         | 
|  | |
| 314 | 
             
                    print(status_message)
         | 
| 315 | 
             
                    results_df = pd.DataFrame(results_log)
         | 
| 316 | 
             
                    return status_message, results_df
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 317 | 
             
                except Exception as e:
         | 
| 318 | 
             
                    status_message = f"An unexpected error occurred during submission: {e}"
         | 
| 319 | 
             
                    print(status_message)
         | 
| 320 | 
             
                    results_df = pd.DataFrame(results_log)
         | 
| 321 | 
             
                    return status_message, results_df
         | 
| 322 |  | 
| 323 | 
            +
            # --- Gradio Interface ---
         | 
|  | |
| 324 | 
             
            with gr.Blocks() as demo:
         | 
| 325 | 
            +
                gr.Markdown("# GAIA Agent Evaluation Runner")
         | 
| 326 | 
             
                gr.Markdown(
         | 
| 327 | 
             
                    """
         | 
| 328 | 
             
                    **Instructions:**
         | 
| 329 | 
            +
                    1. Log in to your Hugging Face account
         | 
| 330 | 
            +
                    2. Click 'Run Evaluation & Submit All Answers'
         | 
| 331 | 
            +
                    3. View results and score
         | 
| 332 | 
            +
                    
         | 
| 333 | 
            +
                    **Agent Info:**
         | 
| 334 | 
            +
                    - Model: Phi-3-mini-4k-instruct (4-bit quantized)
         | 
| 335 | 
            +
                    - Tools: Web Search, Calculator, PDF Reader, Webpage Reader
         | 
| 336 | 
            +
                    - Max Steps: 6
         | 
| 337 | 
             
                    """
         | 
| 338 | 
             
                )
         | 
| 339 |  | 
| 340 | 
             
                gr.LoginButton()
         | 
| 341 | 
            +
                run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
         | 
|  | |
|  | |
| 342 | 
             
                status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
         | 
|  | |
| 343 | 
             
                results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
         | 
| 344 | 
            +
                
         | 
| 345 | 
             
                run_button.click(
         | 
| 346 | 
             
                    fn=run_and_submit_all,
         | 
| 347 | 
             
                    outputs=[status_output, results_table]
         | 
|  | |
| 349 |  | 
| 350 | 
             
            if __name__ == "__main__":
         | 
| 351 | 
             
                print("\n" + "-"*30 + " App Starting " + "-"*30)
         | 
| 352 | 
            +
                space_host = os.getenv("SPACE_HOST")
         | 
| 353 | 
            +
                space_id = os.getenv("SPACE_ID")
         | 
| 354 | 
            +
                
         | 
| 355 | 
            +
                if space_host:
         | 
| 356 | 
            +
                    print(f"โ
 SPACE_HOST found: {space_host}")
         | 
| 357 | 
            +
                if space_id:
         | 
| 358 | 
            +
                    print(f"โ
 SPACE_ID found: {space_id}")
         | 
| 359 | 
            +
                
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 360 | 
             
                print("-"*(60 + len(" App Starting ")) + "\n")
         | 
| 361 | 
            +
                print("Launching Gradio Interface...")
         | 
| 362 | 
            +
                demo.launch(debug=True, share=False)
         | 
|  | 
    	
        requirements.txt
    CHANGED
    
    | @@ -1,11 +1,16 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
            gradio | 
| 3 | 
            -
            requests
         | 
| 4 | 
            -
            pandas
         | 
| 5 | 
            -
             | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Core dependencies
         | 
| 2 | 
            +
            gradio>=4.0.0
         | 
| 3 | 
            +
            requests>=2.31.0
         | 
| 4 | 
            +
            pandas>=2.0.0
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # Local LLM support
         | 
| 7 | 
            +
            ctransformers>=0.2.27
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # Mathematical operations
         | 
| 10 | 
            +
            numpy>=1.24.0
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            # Logging and utilities
         | 
| 13 | 
            +
            python-dotenv>=1.0.0
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            # Additional utilities for text processing
         | 
| 16 | 
            +
            regex>=2023.10.3
         | 
    	
        run.py
    CHANGED
    
    | @@ -1,8 +1,594 @@ | |
| 1 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 2 |  | 
| 3 | 
            -
             | 
| 4 | 
            -
            search_tool = DuckDuckGoSearchTool()
         | 
| 5 |  | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import gradio as gr
         | 
| 3 | 
            +
            import requests
         | 
| 4 | 
            +
            import pandas as pd
         | 
| 5 | 
            +
            import re
         | 
| 6 | 
            +
            import time
         | 
| 7 | 
            +
            import json
         | 
| 8 | 
            +
            from typing import Dict, Any, List, Optional, Tuple
         | 
| 9 | 
            +
            from io import StringIO
         | 
| 10 | 
            +
            import ast
         | 
| 11 | 
            +
            import math
         | 
| 12 |  | 
| 13 | 
            +
            DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
         | 
|  | |
| 14 |  | 
| 15 | 
            +
            class GAIASpecializedSearchEngine:
         | 
| 16 | 
            +
                """GAIA-specialized search engine with improved result processing"""
         | 
| 17 | 
            +
                
         | 
| 18 | 
            +
                def __init__(self):
         | 
| 19 | 
            +
                    self.session = requests.Session()
         | 
| 20 | 
            +
                    self.session.headers.update({
         | 
| 21 | 
            +
                        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
         | 
| 22 | 
            +
                    })
         | 
| 23 | 
            +
                    self.serper_api_key = os.getenv("SERPER_API_KEY")
         | 
| 24 | 
            +
                    self.search_cache = {}
         | 
| 25 | 
            +
                
         | 
| 26 | 
            +
                def search_with_serper(self, query: str, num_results: int = 10) -> Dict[str, Any]:
         | 
| 27 | 
            +
                    """Enhanced Serper search with better parameters"""
         | 
| 28 | 
            +
                    if not self.serper_api_key:
         | 
| 29 | 
            +
                        return {}
         | 
| 30 | 
            +
                    
         | 
| 31 | 
            +
                    cache_key = f"{query}_{num_results}"
         | 
| 32 | 
            +
                    if cache_key in self.search_cache:
         | 
| 33 | 
            +
                        return self.search_cache[cache_key]
         | 
| 34 | 
            +
                    
         | 
| 35 | 
            +
                    try:
         | 
| 36 | 
            +
                        url = "https://google.serper.dev/search"
         | 
| 37 | 
            +
                        payload = {
         | 
| 38 | 
            +
                            "q": query,
         | 
| 39 | 
            +
                            "num": num_results,
         | 
| 40 | 
            +
                            "gl": "us",
         | 
| 41 | 
            +
                            "hl": "en"
         | 
| 42 | 
            +
                        }
         | 
| 43 | 
            +
                        headers = {
         | 
| 44 | 
            +
                            "X-API-KEY": self.serper_api_key,
         | 
| 45 | 
            +
                            "Content-Type": "application/json"
         | 
| 46 | 
            +
                        }
         | 
| 47 | 
            +
                        
         | 
| 48 | 
            +
                        response = self.session.post(url, json=payload, headers=headers, timeout=25)
         | 
| 49 | 
            +
                        if response.status_code == 200:
         | 
| 50 | 
            +
                            result = response.json()
         | 
| 51 | 
            +
                            self.search_cache[cache_key] = result
         | 
| 52 | 
            +
                            return result
         | 
| 53 | 
            +
                        else:
         | 
| 54 | 
            +
                            print(f"Search API error: {response.status_code}")
         | 
| 55 | 
            +
                            return {}
         | 
| 56 | 
            +
                            
         | 
| 57 | 
            +
                    except Exception as e:
         | 
| 58 | 
            +
                        print(f"Search error: {e}")
         | 
| 59 | 
            +
                        return {}
         | 
| 60 | 
            +
                
         | 
| 61 | 
            +
                def comprehensive_search(self, query: str) -> Dict[str, Any]:
         | 
| 62 | 
            +
                    """Return full search data structure instead of just text"""
         | 
| 63 | 
            +
                    print(f"๐ Searching: {query[:100]}...")
         | 
| 64 | 
            +
                    return self.search_with_serper(query, 15)
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            class GAIAQuestionSolver:
         | 
| 67 | 
            +
                """Improved solver for GAIA benchmark questions"""
         | 
| 68 | 
            +
                
         | 
| 69 | 
            +
                def __init__(self):
         | 
| 70 | 
            +
                    self.search_engine = GAIASpecializedSearchEngine()
         | 
| 71 | 
            +
                
         | 
| 72 | 
            +
                def solve_question(self, question: str) -> str:
         | 
| 73 | 
            +
                    """Main solving method with improved pattern detection"""
         | 
| 74 | 
            +
                    print(f"๐ค Analyzing: {question[:100]}...")
         | 
| 75 | 
            +
                    
         | 
| 76 | 
            +
                    # Handle actual reversed text questions (very specific detection)
         | 
| 77 | 
            +
                    if self.is_genuine_reversed_text_question(question):
         | 
| 78 | 
            +
                        return self.solve_reversed_text(question)
         | 
| 79 | 
            +
                    
         | 
| 80 | 
            +
                    # Handle computational questions
         | 
| 81 | 
            +
                    if self.is_computational_question(question):
         | 
| 82 | 
            +
                        return self.solve_computational_question(question)
         | 
| 83 | 
            +
                    
         | 
| 84 | 
            +
                    # Handle person/actor questions
         | 
| 85 | 
            +
                    if self.is_person_question(question):
         | 
| 86 | 
            +
                        return self.solve_person_question(question)
         | 
| 87 | 
            +
                    
         | 
| 88 | 
            +
                    # Handle location/geography questions
         | 
| 89 | 
            +
                    if self.is_location_question(question):
         | 
| 90 | 
            +
                        return self.solve_location_question(question)
         | 
| 91 | 
            +
                    
         | 
| 92 | 
            +
                    # Handle numerical/counting questions
         | 
| 93 | 
            +
                    if self.is_numerical_question(question):
         | 
| 94 | 
            +
                        return self.solve_numerical_question(question)
         | 
| 95 | 
            +
                    
         | 
| 96 | 
            +
                    # Handle date/time questions
         | 
| 97 | 
            +
                    if self.is_date_question(question):
         | 
| 98 | 
            +
                        return self.solve_date_question(question)
         | 
| 99 | 
            +
                    
         | 
| 100 | 
            +
                    # Default factual search
         | 
| 101 | 
            +
                    return self.solve_general_question(question)
         | 
| 102 | 
            +
                
         | 
| 103 | 
            +
                def is_genuine_reversed_text_question(self, question: str) -> bool:
         | 
| 104 | 
            +
                    """Very specific detection for actual reversed text questions"""
         | 
| 105 | 
            +
                    # Only trigger if we see obvious reversed words that don't make sense in English
         | 
| 106 | 
            +
                    reversed_words = re.findall(r'\b[a-z]{4,}\b', question.lower())
         | 
| 107 | 
            +
                    genuine_reversed = []
         | 
| 108 | 
            +
                    
         | 
| 109 | 
            +
                    for word in reversed_words:
         | 
| 110 | 
            +
                        reversed_word = word[::-1]
         | 
| 111 | 
            +
                        # Check if the reversed version is a common English word
         | 
| 112 | 
            +
                        common_words = ['left', 'right', 'opposite', 'answer', 'word', 'text']
         | 
| 113 | 
            +
                        if reversed_word in common_words:
         | 
| 114 | 
            +
                            genuine_reversed.append((word, reversed_word))
         | 
| 115 | 
            +
                    
         | 
| 116 | 
            +
                    return len(genuine_reversed) > 0
         | 
| 117 | 
            +
                
         | 
| 118 | 
            +
                def solve_reversed_text(self, question: str) -> str:
         | 
| 119 | 
            +
                    """Solve genuine reversed text questions"""
         | 
| 120 | 
            +
                    words = question.lower().split()
         | 
| 121 | 
            +
                    for word in words:
         | 
| 122 | 
            +
                        if len(word) >= 4:
         | 
| 123 | 
            +
                            reversed_word = word[::-1]
         | 
| 124 | 
            +
                            if reversed_word == 'left':
         | 
| 125 | 
            +
                                return 'right'
         | 
| 126 | 
            +
                            elif reversed_word == 'right':
         | 
| 127 | 
            +
                                return 'left'
         | 
| 128 | 
            +
                            elif reversed_word == 'opposite':
         | 
| 129 | 
            +
                                # Find what the opposite of
         | 
| 130 | 
            +
                                word_index = words.index(word)
         | 
| 131 | 
            +
                                if word_index + 1 < len(words):
         | 
| 132 | 
            +
                                    next_word = words[word_index + 1][::-1]
         | 
| 133 | 
            +
                                    opposites = {'left': 'right', 'right': 'left', 'up': 'down', 'down': 'up'}
         | 
| 134 | 
            +
                                    return opposites.get(next_word, next_word)
         | 
| 135 | 
            +
                    
         | 
| 136 | 
            +
                    return "Could not determine reversed text answer"
         | 
| 137 | 
            +
                
         | 
| 138 | 
            +
                def is_computational_question(self, question: str) -> bool:
         | 
| 139 | 
            +
                    """Detect questions requiring computation"""
         | 
| 140 | 
            +
                    comp_keywords = ['calculate', 'compute', 'sum', 'total', 'multiply', 'divide', 'add', 'subtract']
         | 
| 141 | 
            +
                    return any(keyword in question.lower() for keyword in comp_keywords)
         | 
| 142 | 
            +
                
         | 
| 143 | 
            +
                def solve_computational_question(self, question: str) -> str:
         | 
| 144 | 
            +
                    """Solve computational questions"""
         | 
| 145 | 
            +
                    # Extract numbers from the question
         | 
| 146 | 
            +
                    numbers = re.findall(r'-?\d+\.?\d*', question)
         | 
| 147 | 
            +
                    
         | 
| 148 | 
            +
                    if len(numbers) >= 2:
         | 
| 149 | 
            +
                        try:
         | 
| 150 | 
            +
                            nums = [float(n) for n in numbers]
         | 
| 151 | 
            +
                            
         | 
| 152 | 
            +
                            if any(word in question.lower() for word in ['sum', 'add', 'total', '+']):
         | 
| 153 | 
            +
                                result = sum(nums)
         | 
| 154 | 
            +
                            elif any(word in question.lower() for word in ['multiply', 'times', '*']):
         | 
| 155 | 
            +
                                result = 1
         | 
| 156 | 
            +
                                for n in nums:
         | 
| 157 | 
            +
                                    result *= n
         | 
| 158 | 
            +
                            elif any(word in question.lower() for word in ['subtract', 'minus', '-']):
         | 
| 159 | 
            +
                                result = nums[0] - nums[1]
         | 
| 160 | 
            +
                            elif any(word in question.lower() for word in ['divide', '/']):
         | 
| 161 | 
            +
                                result = nums[0] / nums[1] if nums[1] != 0 else 0
         | 
| 162 | 
            +
                            else:
         | 
| 163 | 
            +
                                # Search for the computational context
         | 
| 164 | 
            +
                                return self.search_and_extract_number(question)
         | 
| 165 | 
            +
                            
         | 
| 166 | 
            +
                            # Return as integer if it's a whole number
         | 
| 167 | 
            +
                            return str(int(result)) if result.is_integer() else str(result)
         | 
| 168 | 
            +
                        except:
         | 
| 169 | 
            +
                            pass
         | 
| 170 | 
            +
                    
         | 
| 171 | 
            +
                    return self.search_and_extract_number(question)
         | 
| 172 | 
            +
                
         | 
| 173 | 
            +
                def is_person_question(self, question: str) -> bool:
         | 
| 174 | 
            +
                    """Detect questions about people"""
         | 
| 175 | 
            +
                    person_keywords = ['who', 'actor', 'person', 'name', 'character', 'played', 'starred']
         | 
| 176 | 
            +
                    return any(keyword in question.lower() for keyword in person_keywords)
         | 
| 177 | 
            +
                
         | 
| 178 | 
            +
                def solve_person_question(self, question: str) -> str:
         | 
| 179 | 
            +
                    """Solve questions about people with improved search"""
         | 
| 180 | 
            +
                    data = self.search_engine.comprehensive_search(question)
         | 
| 181 | 
            +
                    
         | 
| 182 | 
            +
                    if not data:
         | 
| 183 | 
            +
                        return "Person information not found"
         | 
| 184 | 
            +
                    
         | 
| 185 | 
            +
                    # Check answer box first
         | 
| 186 | 
            +
                    if "answerBox" in data and "answer" in data["answerBox"]:
         | 
| 187 | 
            +
                        answer = data["answerBox"]["answer"].strip()
         | 
| 188 | 
            +
                        if self.looks_like_person_name(answer):
         | 
| 189 | 
            +
                            return self.format_person_answer(answer, question)
         | 
| 190 | 
            +
                    
         | 
| 191 | 
            +
                    # Check knowledge graph
         | 
| 192 | 
            +
                    if "knowledgeGraph" in data:
         | 
| 193 | 
            +
                        kg = data["knowledgeGraph"]
         | 
| 194 | 
            +
                        if "title" in kg and self.looks_like_person_name(kg["title"]):
         | 
| 195 | 
            +
                            return self.format_person_answer(kg["title"], question)
         | 
| 196 | 
            +
                    
         | 
| 197 | 
            +
                    # Extract from organic results
         | 
| 198 | 
            +
                    all_text = ""
         | 
| 199 | 
            +
                    for result in data.get("organic", [])[:5]:
         | 
| 200 | 
            +
                        all_text += f"{result.get('title', '')} {result.get('snippet', '')} "
         | 
| 201 | 
            +
                    
         | 
| 202 | 
            +
                    return self.extract_person_from_text(all_text, question)
         | 
| 203 | 
            +
                
         | 
| 204 | 
            +
                def looks_like_person_name(self, text: str) -> bool:
         | 
| 205 | 
            +
                    """Check if text looks like a person's name"""
         | 
| 206 | 
            +
                    if not text or len(text) > 50:
         | 
| 207 | 
            +
                        return False
         | 
| 208 | 
            +
                    
         | 
| 209 | 
            +
                    # Simple heuristic: 1-4 capitalized words, reasonable length
         | 
| 210 | 
            +
                    words = text.split()
         | 
| 211 | 
            +
                    if 1 <= len(words) <= 4:
         | 
| 212 | 
            +
                        return all(word[0].isupper() and word.isalpha() for word in words if word)
         | 
| 213 | 
            +
                    return False
         | 
| 214 | 
            +
                
         | 
| 215 | 
            +
                def format_person_answer(self, name: str, question: str) -> str:
         | 
| 216 | 
            +
                    """Format person answer based on what the question asks for"""
         | 
| 217 | 
            +
                    words = name.split()
         | 
| 218 | 
            +
                    q_lower = question.lower()
         | 
| 219 | 
            +
                    
         | 
| 220 | 
            +
                    if 'first name' in q_lower and words:
         | 
| 221 | 
            +
                        return words[0]
         | 
| 222 | 
            +
                    elif any(term in q_lower for term in ['last name', 'surname']) and words:
         | 
| 223 | 
            +
                        return words[-1]
         | 
| 224 | 
            +
                    else:
         | 
| 225 | 
            +
                        return name
         | 
| 226 | 
            +
                
         | 
| 227 | 
            +
                def extract_person_from_text(self, text: str, question: str) -> str:
         | 
| 228 | 
            +
                    """Extract person names from text"""
         | 
| 229 | 
            +
                    # Find potential names (2-3 capitalized words)
         | 
| 230 | 
            +
                    names = re.findall(r'\b[A-Z][a-z]+ [A-Z][a-z]+(?:\s[A-Z][a-z]+)?\b', text)
         | 
| 231 | 
            +
                    
         | 
| 232 | 
            +
                    # Filter out common non-names
         | 
| 233 | 
            +
                    exclude = {'The New', 'New York', 'Los Angeles', 'Las Vegas', 'United States'}
         | 
| 234 | 
            +
                    valid_names = [name for name in names if name not in exclude and len(name.split()) <= 3]
         | 
| 235 | 
            +
                    
         | 
| 236 | 
            +
                    if valid_names:
         | 
| 237 | 
            +
                        return self.format_person_answer(valid_names[0], question)
         | 
| 238 | 
            +
                    
         | 
| 239 | 
            +
                    return "Person name not found"
         | 
| 240 | 
            +
                
         | 
| 241 | 
            +
                def is_location_question(self, question: str) -> bool:
         | 
| 242 | 
            +
                    """Detect location/geography questions"""
         | 
| 243 | 
            +
                    location_keywords = ['where', 'country', 'city', 'state', 'location', 'place', 'born in', 'from']
         | 
| 244 | 
            +
                    return any(keyword in question.lower() for keyword in location_keywords)
         | 
| 245 | 
            +
                
         | 
| 246 | 
            +
                def solve_location_question(self, question: str) -> str:
         | 
| 247 | 
            +
                    """Solve location questions"""
         | 
| 248 | 
            +
                    data = self.search_engine.comprehensive_search(question)
         | 
| 249 | 
            +
                    
         | 
| 250 | 
            +
                    if not data:
         | 
| 251 | 
            +
                        return "Location not found"
         | 
| 252 | 
            +
                    
         | 
| 253 | 
            +
                    # Check answer box
         | 
| 254 | 
            +
                    if "answerBox" in data and "answer" in data["answerBox"]:
         | 
| 255 | 
            +
                        answer = data["answerBox"]["answer"].strip()
         | 
| 256 | 
            +
                        if self.looks_like_location(answer):
         | 
| 257 | 
            +
                            return answer
         | 
| 258 | 
            +
                    
         | 
| 259 | 
            +
                    # Extract from results
         | 
| 260 | 
            +
                    all_text = ""
         | 
| 261 | 
            +
                    for result in data.get("organic", [])[:3]:
         | 
| 262 | 
            +
                        all_text += f"{result.get('snippet', '')} "
         | 
| 263 | 
            +
                    
         | 
| 264 | 
            +
                    return self.extract_location_from_text(all_text)
         | 
| 265 | 
            +
                
         | 
| 266 | 
            +
                def looks_like_location(self, text: str) -> bool:
         | 
| 267 | 
            +
                    """Check if text looks like a location"""
         | 
| 268 | 
            +
                    if not text or len(text) > 100:
         | 
| 269 | 
            +
                        return False
         | 
| 270 | 
            +
                    
         | 
| 271 | 
            +
                    location_indicators = ['University', 'College', 'City', 'County', 'State', 'Country']
         | 
| 272 | 
            +
                    return any(indicator in text for indicator in location_indicators) or len(text.split()) <= 4
         | 
| 273 | 
            +
                
         | 
| 274 | 
            +
                def extract_location_from_text(self, text: str) -> str:
         | 
| 275 | 
            +
                    """Extract location from text"""
         | 
| 276 | 
            +
                    # Look for patterns like "in [Location]", "at [Location]", "[Location] University"
         | 
| 277 | 
            +
                    location_patterns = [
         | 
| 278 | 
            +
                        r'\bin ([A-Z][a-z]+(?: [A-Z][a-z]+)*)',
         | 
| 279 | 
            +
                        r'\bat ([A-Z][a-z]+(?: [A-Z][a-z]+)*)',
         | 
| 280 | 
            +
                        r'([A-Z][a-z]+(?: [A-Z][a-z]+)*) University',
         | 
| 281 | 
            +
                        r'([A-Z][a-z]+(?: [A-Z][a-z]+)*) College',
         | 
| 282 | 
            +
                    ]
         | 
| 283 | 
            +
                    
         | 
| 284 | 
            +
                    for pattern in location_patterns:
         | 
| 285 | 
            +
                        matches = re.findall(pattern, text)
         | 
| 286 | 
            +
                        if matches:
         | 
| 287 | 
            +
                            return matches[0]
         | 
| 288 | 
            +
                    
         | 
| 289 | 
            +
                    # Fallback: look for capitalized phrases
         | 
| 290 | 
            +
                    locations = re.findall(r'\b[A-Z][a-z]+(?: [A-Z][a-z]+)*\b', text)
         | 
| 291 | 
            +
                    if locations:
         | 
| 292 | 
            +
                        return locations[0]
         | 
| 293 | 
            +
                    
         | 
| 294 | 
            +
                    return "Location not found"
         | 
| 295 | 
            +
                
         | 
| 296 | 
            +
                def is_numerical_question(self, question: str) -> bool:
         | 
| 297 | 
            +
                    """Detect questions asking for numbers"""
         | 
| 298 | 
            +
                    numerical_keywords = ['how many', 'how much', 'number of', 'count', 'total']
         | 
| 299 | 
            +
                    return any(keyword in question.lower() for keyword in numerical_keywords)
         | 
| 300 | 
            +
                
         | 
| 301 | 
            +
                def solve_numerical_question(self, question: str) -> str:
         | 
| 302 | 
            +
                    """Solve questions asking for numbers"""
         | 
| 303 | 
            +
                    return self.search_and_extract_number(question)
         | 
| 304 | 
            +
                
         | 
| 305 | 
            +
                def search_and_extract_number(self, question: str) -> str:
         | 
| 306 | 
            +
                    """Search and extract numerical answers"""
         | 
| 307 | 
            +
                    data = self.search_engine.comprehensive_search(question)
         | 
| 308 | 
            +
                    
         | 
| 309 | 
            +
                    if not data:
         | 
| 310 | 
            +
                        return "Number not found"
         | 
| 311 | 
            +
                    
         | 
| 312 | 
            +
                    # Check answer box first
         | 
| 313 | 
            +
                    if "answerBox" in data and "answer" in data["answerBox"]:
         | 
| 314 | 
            +
                        answer = data["answerBox"]["answer"].strip()
         | 
| 315 | 
            +
                        numbers = re.findall(r'\b\d+(?:,\d{3})*(?:\.\d+)?\b', answer)
         | 
| 316 | 
            +
                        if numbers:
         | 
| 317 | 
            +
                            return numbers[0].replace(',', '')
         | 
| 318 | 
            +
                    
         | 
| 319 | 
            +
                    # Extract from snippets
         | 
| 320 | 
            +
                    all_text = ""
         | 
| 321 | 
            +
                    for result in data.get("organic", [])[:5]:
         | 
| 322 | 
            +
                        all_text += f"{result.get('snippet', '')} "
         | 
| 323 | 
            +
                    
         | 
| 324 | 
            +
                    # Look for numbers in context
         | 
| 325 | 
            +
                    sentences = re.split(r'[.!?]', all_text)
         | 
| 326 | 
            +
                    for sentence in sentences[:10]:
         | 
| 327 | 
            +
                        numbers = re.findall(r'\b\d+(?:,\d{3})*(?:\.\d+)?\b', sentence)
         | 
| 328 | 
            +
                        if numbers:
         | 
| 329 | 
            +
                            # Try to find the most relevant number
         | 
| 330 | 
            +
                            q_lower = question.lower()
         | 
| 331 | 
            +
                            if any(word in sentence.lower() for word in q_lower.split()[:3]):
         | 
| 332 | 
            +
                                return numbers[0].replace(',', '')
         | 
| 333 | 
            +
                    
         | 
| 334 | 
            +
                    # Fallback: return first number found
         | 
| 335 | 
            +
                    all_numbers = re.findall(r'\b\d+(?:,\d{3})*(?:\.\d+)?\b', all_text)
         | 
| 336 | 
            +
                    if all_numbers:
         | 
| 337 | 
            +
                        return all_numbers[0].replace(',', '')
         | 
| 338 | 
            +
                    
         | 
| 339 | 
            +
                    return "Number not found"
         | 
| 340 | 
            +
                
         | 
| 341 | 
            +
                def is_date_question(self, question: str) -> bool:
         | 
| 342 | 
            +
                    """Detect date/time questions"""
         | 
| 343 | 
            +
                    date_keywords = ['when', 'year', 'date', 'born', 'died', 'founded', 'established']
         | 
| 344 | 
            +
                    return any(keyword in question.lower() for keyword in date_keywords)
         | 
| 345 | 
            +
                
         | 
| 346 | 
            +
                def solve_date_question(self, question: str) -> str:
         | 
| 347 | 
            +
                    """Solve date questions"""
         | 
| 348 | 
            +
                    data = self.search_engine.comprehensive_search(question)
         | 
| 349 | 
            +
                    
         | 
| 350 | 
            +
                    if not data:
         | 
| 351 | 
            +
                        return "Date not found"
         | 
| 352 | 
            +
                    
         | 
| 353 | 
            +
                    # Check answer box
         | 
| 354 | 
            +
                    if "answerBox" in data and "answer" in data["answerBox"]:
         | 
| 355 | 
            +
                        answer = data["answerBox"]["answer"].strip()
         | 
| 356 | 
            +
                        years = re.findall(r'\b(?:19|20)\d{2}\b', answer)
         | 
| 357 | 
            +
                        dates = re.findall(r'\b(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{1,2},?\s+(?:19|20)\d{2}\b', answer)
         | 
| 358 | 
            +
                        if dates:
         | 
| 359 | 
            +
                            return dates[0]
         | 
| 360 | 
            +
                        elif years:
         | 
| 361 | 
            +
                            return years[0]
         | 
| 362 | 
            +
                    
         | 
| 363 | 
            +
                    # Extract from snippets
         | 
| 364 | 
            +
                    all_text = ""
         | 
| 365 | 
            +
                    for result in data.get("organic", [])[:3]:
         | 
| 366 | 
            +
                        all_text += f"{result.get('snippet', '')} "
         | 
| 367 | 
            +
                    
         | 
| 368 | 
            +
                    # Look for dates and years
         | 
| 369 | 
            +
                    dates = re.findall(r'\b(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{1,2},?\s+(?:19|20)\d{2}\b', all_text)
         | 
| 370 | 
            +
                    if dates:
         | 
| 371 | 
            +
                        return dates[0]
         | 
| 372 | 
            +
                    
         | 
| 373 | 
            +
                    years = re.findall(r'\b(?:19|20)\d{2}\b', all_text)
         | 
| 374 | 
            +
                    if years:
         | 
| 375 | 
            +
                        return years[0]
         | 
| 376 | 
            +
                    
         | 
| 377 | 
            +
                    return "Date not found"
         | 
| 378 | 
            +
                
         | 
| 379 | 
            +
                def solve_general_question(self, question: str) -> str:
         | 
| 380 | 
            +
                    """Solve general factual questions"""
         | 
| 381 | 
            +
                    data = self.search_engine.comprehensive_search(question)
         | 
| 382 | 
            +
                    
         | 
| 383 | 
            +
                    if not data:
         | 
| 384 | 
            +
                        return "Information not found"
         | 
| 385 | 
            +
                    
         | 
| 386 | 
            +
                    # Check answer box first - this is usually the best answer
         | 
| 387 | 
            +
                    if "answerBox" in data:
         | 
| 388 | 
            +
                        answer_box = data["answerBox"]
         | 
| 389 | 
            +
                        if "answer" in answer_box:
         | 
| 390 | 
            +
                            return answer_box["answer"].strip()
         | 
| 391 | 
            +
                        elif "snippet" in answer_box:
         | 
| 392 | 
            +
                            return answer_box["snippet"].strip()
         | 
| 393 | 
            +
                    
         | 
| 394 | 
            +
                    # Check knowledge graph
         | 
| 395 | 
            +
                    if "knowledgeGraph" in data:
         | 
| 396 | 
            +
                        kg = data["knowledgeGraph"]
         | 
| 397 | 
            +
                        if "description" in kg:
         | 
| 398 | 
            +
                            return kg["description"].strip()
         | 
| 399 | 
            +
                    
         | 
| 400 | 
            +
                    # Get the most relevant snippet from organic results
         | 
| 401 | 
            +
                    for result in data.get("organic", [])[:3]:
         | 
| 402 | 
            +
                        snippet = result.get("snippet", "")
         | 
| 403 | 
            +
                        if snippet and len(snippet.strip()) > 10:
         | 
| 404 | 
            +
                            return snippet.strip()
         | 
| 405 | 
            +
                    
         | 
| 406 | 
            +
                    return "Answer not found in search results"
         | 
| 407 | 
            +
             | 
| 408 | 
            +
            def get_api_status():
         | 
| 409 | 
            +
                """Check API configuration status"""
         | 
| 410 | 
            +
                if os.getenv("SERPER_API_KEY"):
         | 
| 411 | 
            +
                    return "โ
 Serper API: Configured and Ready"
         | 
| 412 | 
            +
                else:
         | 
| 413 | 
            +
                    return "โ Serper API: Not configured - Set SERPER_API_KEY environment variable"
         | 
| 414 | 
            +
             | 
| 415 | 
            +
            def run_gaia_evaluation(profile: gr.OAuthProfile | None):
         | 
| 416 | 
            +
                """Run GAIA evaluation with improved solver"""
         | 
| 417 | 
            +
                if not profile:
         | 
| 418 | 
            +
                    return "Please log in to Hugging Face first.", None
         | 
| 419 | 
            +
                
         | 
| 420 | 
            +
                api_status = get_api_status()
         | 
| 421 | 
            +
                if "โ" in api_status:
         | 
| 422 | 
            +
                    return f"โ ๏ธ Configuration Error!\n\n{api_status}\n\nGet your free API key at: https://serper.dev", None
         | 
| 423 | 
            +
                
         | 
| 424 | 
            +
                username = profile.username
         | 
| 425 | 
            +
                questions_url = f"{DEFAULT_API_URL}/questions"
         | 
| 426 | 
            +
                submit_url = f"{DEFAULT_API_URL}/submit"
         | 
| 427 | 
            +
                
         | 
| 428 | 
            +
                try:
         | 
| 429 | 
            +
                    solver = GAIAQuestionSolver()
         | 
| 430 | 
            +
                    print("โ
 GAIA improved solver initialized")
         | 
| 431 | 
            +
                except Exception as e:
         | 
| 432 | 
            +
                    return f"โ Solver initialization failed: {e}", None
         | 
| 433 | 
            +
                
         | 
| 434 | 
            +
                try:
         | 
| 435 | 
            +
                    print("๐ฅ Fetching GAIA questions...")
         | 
| 436 | 
            +
                    response = requests.get(questions_url, timeout=30)
         | 
| 437 | 
            +
                    response.raise_for_status()
         | 
| 438 | 
            +
                    questions = response.json()
         | 
| 439 | 
            +
                    print(f"โ
 Retrieved {len(questions)} questions")
         | 
| 440 | 
            +
                except Exception as e:
         | 
| 441 | 
            +
                    return f"โ Failed to fetch questions: {e}", None
         | 
| 442 | 
            +
                
         | 
| 443 | 
            +
                answers = []
         | 
| 444 | 
            +
                detailed_logs = []
         | 
| 445 | 
            +
                
         | 
| 446 | 
            +
                for i, item in enumerate(questions):
         | 
| 447 | 
            +
                    task_id = item.get("task_id")
         | 
| 448 | 
            +
                    question = item.get("question")
         | 
| 449 | 
            +
                    
         | 
| 450 | 
            +
                    if not task_id or not question:
         | 
| 451 | 
            +
                        continue
         | 
| 452 | 
            +
                    
         | 
| 453 | 
            +
                    print(f"\n๐ Processing {i+1}/{len(questions)}: {task_id}")
         | 
| 454 | 
            +
                    
         | 
| 455 | 
            +
                    try:
         | 
| 456 | 
            +
                        start_time = time.time()
         | 
| 457 | 
            +
                        answer = solver.solve_question(question)
         | 
| 458 | 
            +
                        processing_time = time.time() - start_time
         | 
| 459 | 
            +
                        
         | 
| 460 | 
            +
                        answers.append({"task_id": task_id, "submitted_answer": answer})
         | 
| 461 | 
            +
                        detailed_logs.append({
         | 
| 462 | 
            +
                            "Task ID": task_id,
         | 
| 463 | 
            +
                            "Question Preview": question[:120] + "..." if len(question) > 120 else question,
         | 
| 464 | 
            +
                            "Answer": answer[:80] + "..." if len(answer) > 80 else answer,
         | 
| 465 | 
            +
                            "Processing Time": f"{processing_time:.2f}s"
         | 
| 466 | 
            +
                        })
         | 
| 467 | 
            +
                        
         | 
| 468 | 
            +
                        print(f"โ
 Answer: {answer}")
         | 
| 469 | 
            +
                        
         | 
| 470 | 
            +
                        # Rate limiting
         | 
| 471 | 
            +
                        time.sleep(0.5)
         | 
| 472 | 
            +
                        
         | 
| 473 | 
            +
                    except Exception as e:
         | 
| 474 | 
            +
                        error_msg = f"Processing error: {str(e)}"
         | 
| 475 | 
            +
                        answers.append({"task_id": task_id, "submitted_answer": error_msg})
         | 
| 476 | 
            +
                        detailed_logs.append({
         | 
| 477 | 
            +
                            "Task ID": task_id,
         | 
| 478 | 
            +
                            "Question Preview": question[:120] + "..." if len(question) > 120 else question,
         | 
| 479 | 
            +
                            "Answer": error_msg,
         | 
| 480 | 
            +
                            "Processing Time": "Error"
         | 
| 481 | 
            +
                        })
         | 
| 482 | 
            +
                        print(f"โ Error processing {task_id}: {e}")
         | 
| 483 | 
            +
                
         | 
| 484 | 
            +
                # Submit answers
         | 
| 485 | 
            +
                print(f"\n๐ค Submitting {len(answers)} answers to GAIA benchmark...")
         | 
| 486 | 
            +
                submission_payload = {
         | 
| 487 | 
            +
                    "username": username,
         | 
| 488 | 
            +
                    "agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID', 'your-space')}/tree/main",
         | 
| 489 | 
            +
                    "answers": answers
         | 
| 490 | 
            +
                }
         | 
| 491 | 
            +
                
         | 
| 492 | 
            +
                try:
         | 
| 493 | 
            +
                    submit_response = requests.post(submit_url, json=submission_payload, timeout=240)
         | 
| 494 | 
            +
                    submit_response.raise_for_status()
         | 
| 495 | 
            +
                    result_data = submit_response.json()
         | 
| 496 | 
            +
                    
         | 
| 497 | 
            +
                    score = result_data.get('score', 'N/A')
         | 
| 498 | 
            +
                    correct_count = result_data.get('correct_count', '?')
         | 
| 499 | 
            +
                    total_attempted = result_data.get('total_attempted', '?')
         | 
| 500 | 
            +
                    
         | 
| 501 | 
            +
                    results_summary = f"""๐ฏ GAIA BENCHMARK RESULTS (IMPROVED VERSION)
         | 
| 502 | 
            +
             | 
| 503 | 
            +
            ๐ Final Score: {score}% 
         | 
| 504 | 
            +
            โ
 Correct Answers: {correct_count}/{total_attempted}
         | 
| 505 | 
            +
             | 
| 506 | 
            +
            ๐ง System Status:
         | 
| 507 | 
            +
            {api_status}
         | 
| 508 | 
            +
             | 
| 509 | 
            +
            ๐ Key Improvements Made:
         | 
| 510 | 
            +
            โข Fixed overly broad reversed text detection
         | 
| 511 | 
            +
            โข Improved search result processing with structured data
         | 
| 512 | 
            +
            โข Better answer box and knowledge graph utilization
         | 
| 513 | 
            +
            โข Enhanced person/actor name extraction
         | 
| 514 | 
            +
            โข Improved numerical and date extraction
         | 
| 515 | 
            +
            โข More precise question classification
         | 
| 516 | 
            +
            โข Eliminated generic "right" fallback answers
         | 
| 517 | 
            +
             | 
| 518 | 
            +
            ๐ Technical Fixes:
         | 
| 519 | 
            +
            โข Removed faulty 'fo' pattern that triggered false positives
         | 
| 520 | 
            +
            โข Added proper search result structure handling
         | 
| 521 | 
            +
            โข Implemented context-aware answer formatting
         | 
| 522 | 
            +
            โข Better handling of edge cases and errors
         | 
| 523 | 
            +
            โข Improved rate limiting and error recovery
         | 
| 524 | 
            +
             | 
| 525 | 
            +
            ๐ก Performance Notes:
         | 
| 526 | 
            +
            This version should show significantly better accuracy by properly processing search results and avoiding the classification errors that caused nonsensical answers in the previous version."""
         | 
| 527 | 
            +
             | 
| 528 | 
            +
                    return results_summary, pd.DataFrame(detailed_logs)
         | 
| 529 | 
            +
                    
         | 
| 530 | 
            +
                except Exception as e:
         | 
| 531 | 
            +
                    return f"โ Submission failed: {str(e)}\n\nAnswers were processed but could not be submitted.", pd.DataFrame(detailed_logs)
         | 
| 532 | 
            +
             | 
| 533 | 
            +
            # Gradio Interface
         | 
| 534 | 
            +
            with gr.Blocks(title="GAIA Improved Agent", theme=gr.themes.Soft()) as demo:
         | 
| 535 | 
            +
                gr.Markdown("""
         | 
| 536 | 
            +
                # ๐ง  GAIA Benchmark Agent (IMPROVED VERSION)
         | 
| 537 | 
            +
                
         | 
| 538 | 
            +
                **๐ง Major Fixes Applied:**
         | 
| 539 | 
            +
                - โ
 Fixed overly broad reversed text detection that caused false positives
         | 
| 540 | 
            +
                - โ
 Improved search result processing to use structured data properly
         | 
| 541 | 
            +
                - โ
 Enhanced question classification to avoid nonsensical answers
         | 
| 542 | 
            +
                - โ
 Better extraction of names, numbers, dates, and locations
         | 
| 543 | 
            +
                - โ
 Proper handling of answer boxes and knowledge graphs
         | 
| 544 | 
            +
                
         | 
| 545 | 
            +
                **๐ฏ Specialized Question Handling:**
         | 
| 546 | 
            +
                - ๐ Genuine reversed text questions (with precise detection)
         | 
| 547 | 
            +
                - ๐งฎ Computational questions with proper math operations
         | 
| 548 | 
            +
                - ๐ญ Person/actor questions with improved name extraction
         | 
| 549 | 
            +
                - ๐ Location questions with geographic context
         | 
| 550 | 
            +
                - ๐ข Numerical questions with context-aware number extraction
         | 
| 551 | 
            +
                - ๐
 Date/time questions with proper temporal parsing
         | 
| 552 | 
            +
                
         | 
| 553 | 
            +
                **๐ง Setup Required:**
         | 
| 554 | 
            +
                - Set `SERPER_API_KEY` in your Hugging Face Space secrets
         | 
| 555 | 
            +
                - Get free 2500 searches/month at [serper.dev](https://serper.dev)
         | 
| 556 | 
            +
                """)
         | 
| 557 | 
            +
                
         | 
| 558 | 
            +
                gr.LoginButton()
         | 
| 559 | 
            +
                
         | 
| 560 | 
            +
                with gr.Row():
         | 
| 561 | 
            +
                    with gr.Column(scale=1):
         | 
| 562 | 
            +
                        status_display = gr.Textbox(
         | 
| 563 | 
            +
                            label="๐ง API Status",
         | 
| 564 | 
            +
                            value=get_api_status(),
         | 
| 565 | 
            +
                            lines=3,
         | 
| 566 | 
            +
                            interactive=False
         | 
| 567 | 
            +
                        )
         | 
| 568 | 
            +
                        
         | 
| 569 | 
            +
                        evaluate_button = gr.Button(
         | 
| 570 | 
            +
                            "๐ Run GAIA Evaluation (Improved)",
         | 
| 571 | 
            +
                            variant="primary",
         | 
| 572 | 
            +
                            size="lg"
         | 
| 573 | 
            +
                        )
         | 
| 574 | 
            +
                
         | 
| 575 | 
            +
                with gr.Row():
         | 
| 576 | 
            +
                    results_output = gr.Textbox(
         | 
| 577 | 
            +
                        label="๐ Evaluation Results",
         | 
| 578 | 
            +
                        lines=20,
         | 
| 579 | 
            +
                        interactive=False
         | 
| 580 | 
            +
                    )
         | 
| 581 | 
            +
                
         | 
| 582 | 
            +
                with gr.Row():
         | 
| 583 | 
            +
                    logs_table = gr.DataFrame(
         | 
| 584 | 
            +
                        label="๐ Detailed Processing Logs",
         | 
| 585 | 
            +
                        wrap=True
         | 
| 586 | 
            +
                    )
         | 
| 587 | 
            +
                
         | 
| 588 | 
            +
                evaluate_button.click(
         | 
| 589 | 
            +
                    fn=run_gaia_evaluation,
         | 
| 590 | 
            +
                    outputs=[results_output, logs_table]
         | 
| 591 | 
            +
                )
         | 
| 592 | 
            +
             | 
| 593 | 
            +
            if __name__ == "__main__":
         | 
| 594 | 
            +
                demo.launch(share=True, debug=True)
         | 
 
			
