Spaces:
Runtime error
Runtime error
# app.py | |
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
# SmolAgents imports | |
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Enhanced Agent Definition --- | |
class BasicAgent: | |
def __init__(self): | |
print("BasicAgent initialized with real agentic capabilities.") | |
# Initialize tools and model | |
self.search_tool = DuckDuckGoSearchTool() | |
self.model = InferenceClientModel() | |
self.agent = CodeAgent( | |
model=self.model, | |
tools=[self.search_tool] | |
) | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
try: | |
response = self.agent.run(question) | |
print(f"Agent response (first 50 chars): {response[:50]}...") | |
return response | |
except Exception as e: | |
print(f"Agent error during run: {e}") | |
return f"Error in agent: {e}" | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = profile.username | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please login to Hugging Face to submit answers.", None | |
questions_url = f"{DEFAULT_API_URL}/questions" | |
submit_url = f"{DEFAULT_API_URL}/submit" | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# Fetch questions | |
try: | |
resp = requests.get(questions_url, timeout=15) | |
resp.raise_for_status() | |
questions_data = resp.json() | |
if not questions_data: | |
return "Empty or invalid question list.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
# Run agent on questions | |
results_log = [] | |
answers_payload = [] | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
continue | |
try: | |
submitted = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted}) | |
except Exception as e: | |
print(f"Error on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}"}) | |
if not answers_payload: | |
return "Agent did not produce any answers.", pd.DataFrame(results_log) | |
# Prepare & submit | |
payload = {"username": username, "agent_code": agent_code, "answers": answers_payload} | |
try: | |
submit_resp = requests.post(submit_url, json=payload, timeout=60) | |
submit_resp.raise_for_status() | |
result_json = submit_resp.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_json.get('username')}\n" | |
f"Score: {result_json.get('score', 'N/A')}% " | |
f"({result_json.get('correct_count', '?')}/{result_json.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_json.get('message', '')}" | |
) | |
return final_status, pd.DataFrame(results_log) | |
except Exception as e: | |
return f"Submission failed: {e}", pd.DataFrame(results_log) | |
# --- Gradio UI --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown(""" | |
Modify `BasicAgent` to add more tools or logic. | |
Log in, click **Run Evaluation & Submit All Answers**, and watch it process automatically. | |
""") | |
gr.LoginButton() | |
run_btn = gr.Button("Run Evaluation & Submit All Answers") | |
status = gr.Textbox(label="Status / Submission Result", lines=5, interactive=False) | |
results = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_btn.click(fn=run_and_submit_all, outputs=[status, results]) | |
if __name__ == "__main__": | |
print("Launching app...") | |
demo.launch(debug=True, share=False) | |