LamiaYT's picture
Deploy GAIA agent
a39e119
raw
history blame
4.6 kB
# app.py
import os
import gradio as gr
import requests
import inspect
import pandas as pd
# SmolAgents imports
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Enhanced Agent Definition ---
class BasicAgent:
def __init__(self):
print("BasicAgent initialized with real agentic capabilities.")
# Initialize tools and model
self.search_tool = DuckDuckGoSearchTool()
self.model = InferenceClientModel()
self.agent = CodeAgent(
model=self.model,
tools=[self.search_tool]
)
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
try:
response = self.agent.run(question)
print(f"Agent response (first 50 chars): {response[:50]}...")
return response
except Exception as e:
print(f"Agent error during run: {e}")
return f"Error in agent: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please login to Hugging Face to submit answers.", None
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# Fetch questions
try:
resp = requests.get(questions_url, timeout=15)
resp.raise_for_status()
questions_data = resp.json()
if not questions_data:
return "Empty or invalid question list.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# Run agent on questions
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted})
except Exception as e:
print(f"Error on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}"})
if not answers_payload:
return "Agent did not produce any answers.", pd.DataFrame(results_log)
# Prepare & submit
payload = {"username": username, "agent_code": agent_code, "answers": answers_payload}
try:
submit_resp = requests.post(submit_url, json=payload, timeout=60)
submit_resp.raise_for_status()
result_json = submit_resp.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_json.get('username')}\n"
f"Score: {result_json.get('score', 'N/A')}% "
f"({result_json.get('correct_count', '?')}/{result_json.get('total_attempted', '?')} correct)\n"
f"Message: {result_json.get('message', '')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission failed: {e}", pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
Modify `BasicAgent` to add more tools or logic.
Log in, click **Run Evaluation & Submit All Answers**, and watch it process automatically.
""")
gr.LoginButton()
run_btn = gr.Button("Run Evaluation & Submit All Answers")
status = gr.Textbox(label="Status / Submission Result", lines=5, interactive=False)
results = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_btn.click(fn=run_and_submit_all, outputs=[status, results])
if __name__ == "__main__":
print("Launching app...")
demo.launch(debug=True, share=False)