# app.py import os import gradio as gr import requests import inspect import pandas as pd # SmolAgents imports from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel # --- Constants --- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --- Enhanced Agent Definition --- class BasicAgent: def __init__(self): print("BasicAgent initialized with real agentic capabilities.") # Initialize tools and model self.search_tool = DuckDuckGoSearchTool() self.model = InferenceClientModel() self.agent = CodeAgent( model=self.model, tools=[self.search_tool] ) def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") try: response = self.agent.run(question) print(f"Agent response (first 50 chars): {response[:50]}...") return response except Exception as e: print(f"Agent error during run: {e}") return f"Error in agent: {e}" def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ space_id = os.getenv("SPACE_ID") if profile: username = profile.username print(f"User logged in: {username}") else: print("User not logged in.") return "Please login to Hugging Face to submit answers.", None questions_url = f"{DEFAULT_API_URL}/questions" submit_url = f"{DEFAULT_API_URL}/submit" try: agent = BasicAgent() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # Fetch questions try: resp = requests.get(questions_url, timeout=15) resp.raise_for_status() questions_data = resp.json() if not questions_data: return "Empty or invalid question list.", None print(f"Fetched {len(questions_data)} questions.") except Exception as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None # Run agent on questions results_log = [] answers_payload = [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: submitted = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted}) except Exception as e: print(f"Error on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"ERROR: {e}"}) if not answers_payload: return "Agent did not produce any answers.", pd.DataFrame(results_log) # Prepare & submit payload = {"username": username, "agent_code": agent_code, "answers": answers_payload} try: submit_resp = requests.post(submit_url, json=payload, timeout=60) submit_resp.raise_for_status() result_json = submit_resp.json() final_status = ( f"Submission Successful!\n" f"User: {result_json.get('username')}\n" f"Score: {result_json.get('score', 'N/A')}% " f"({result_json.get('correct_count', '?')}/{result_json.get('total_attempted', '?')} correct)\n" f"Message: {result_json.get('message', '')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: return f"Submission failed: {e}", pd.DataFrame(results_log) # --- Gradio UI --- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown(""" Modify `BasicAgent` to add more tools or logic. Log in, click **Run Evaluation & Submit All Answers**, and watch it process automatically. """) gr.LoginButton() run_btn = gr.Button("Run Evaluation & Submit All Answers") status = gr.Textbox(label="Status / Submission Result", lines=5, interactive=False) results = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_btn.click(fn=run_and_submit_all, outputs=[status, results]) if __name__ == "__main__": print("Launching app...") demo.launch(debug=True, share=False)