LamiaYT's picture
Initial commit with LlamaIndex-based agent
8f6825e
raw
history blame
17.3 kB
# app.py - Optimized for 16GB Memory
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
from transformers import AutoTokenizer
import os
import gradio as gr
import requests
import pandas as pd
import traceback
import torch
import re
# Import real tool dependencies
try:
from duckduckgo_search import DDGS
except ImportError:
print("Warning: duckduckgo_search not installed. Web search will be limited.")
DDGS = None
try:
from sympy import sympify, solve, simplify, N
from sympy.core.sympify import SympifyError
except ImportError:
print("Warning: sympy not installed. Math calculator will be limited.")
sympify = None
SympifyError = Exception
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Advanced Agent Definition ---
class SmartAgent:
def __init__(self):
print("Initializing Optimized LLM Agent for 16GB Memory...")
# Check available memory and CUDA
if torch.cuda.is_available():
print(f"CUDA available. GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
device_map = "auto"
else:
print("CUDA not available, using CPU")
device_map = "cpu"
# Use a better model for 16GB - these are proven to work well
model_options = [
"microsoft/DialoGPT-medium",
"google/flan-t5-large", # Better reasoning capability
"microsoft/DialoGPT-large", # Good for conversation
]
model_name = model_options[1] # flan-t5-large for better reasoning
print(f"Loading model: {model_name}")
try:
self.llm = HuggingFaceLLM(
model_name=model_name,
tokenizer_name=model_name,
context_window=2048, # Larger context for better understanding
max_new_tokens=512, # More tokens for detailed answers
generate_kwargs={
"temperature": 0.1, # Very low temperature for accuracy
"do_sample": True,
"top_p": 0.95,
"repetition_penalty": 1.2,
"pad_token_id": 0, # Add explicit pad token
},
device_map=device_map,
model_kwargs={
"torch_dtype": torch.float16,
"low_cpu_mem_usage": True,
"trust_remote_code": True,
},
# Better system message for instruction following
system_message="""You are a precise AI assistant. When asked a question:
1. If it needs current information, use web_search tool
2. If it involves calculations, use math_calculator tool
3. Provide direct, accurate answers
4. Always be specific and factual"""
)
print(f"Successfully loaded model: {model_name}")
except Exception as e:
print(f"Failed to load {model_name}: {e}")
# Try smaller fallback
fallback_model = "microsoft/DialoGPT-medium"
print(f"Falling back to: {fallback_model}")
self.llm = HuggingFaceLLM(
model_name=fallback_model,
tokenizer_name=fallback_model,
context_window=1024,
max_new_tokens=256,
generate_kwargs={
"temperature": 0.1,
"do_sample": True,
"top_p": 0.9,
"repetition_penalty": 1.1,
},
device_map=device_map,
model_kwargs={
"torch_dtype": torch.float16,
"low_cpu_mem_usage": True,
}
)
print(f"Successfully loaded fallback model: {fallback_model}")
# Define tools with improved implementations
self.tools = [
FunctionTool.from_defaults(
fn=self.web_search,
name="web_search",
description="Search the web for current information, facts, or recent events. Use when you need up-to-date information."
),
FunctionTool.from_defaults(
fn=self.math_calculator,
name="math_calculator",
description="Perform mathematical calculations, solve equations, or evaluate mathematical expressions."
)
]
# Create ReAct agent with better settings
try:
self.agent = ReActAgent.from_tools(
tools=self.tools,
llm=self.llm,
verbose=True,
max_iterations=5, # Allow more iterations for complex problems
max_function_calls=10, # Allow more tool calls
)
print("ReAct Agent initialized successfully.")
except Exception as e:
print(f"Error creating ReAct agent: {e}")
self.agent = None
def web_search(self, query: str) -> str:
"""Enhanced web search with better result formatting"""
print(f"๐Ÿ” Web search: {query}")
if not DDGS:
return "Web search unavailable - duckduckgo_search not installed"
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=8, region='wt-wt'))
if results:
# Format results more concisely for the LLM
formatted_results = []
for i, r in enumerate(results[:5], 1): # Top 5 results
title = r.get('title', 'No title')
body = r.get('body', 'No description')
# Clean and truncate body
body = body.replace('\n', ' ').strip()[:200]
formatted_results.append(f"{i}. {title}: {body}")
search_summary = f"Search results for '{query}':\n" + "\n".join(formatted_results)
print(f"โœ… Found {len(results)} results")
return search_summary
else:
return f"No results found for '{query}'. Try different keywords."
except Exception as e:
print(f"โŒ Web search error: {e}")
return f"Search error for '{query}': {str(e)}"
def math_calculator(self, expression: str) -> str:
"""Enhanced math calculator with better parsing"""
print(f"๐Ÿงฎ Math calculation: {expression}")
if not sympify:
# Basic fallback
try:
# Clean expression
clean_expr = expression.replace('^', '**').replace('ร—', '*').replace('รท', '/')
result = eval(clean_expr)
return f"Result: {result}"
except Exception as e:
return f"Math error: {str(e)}"
try:
# Clean and prepare expression
clean_expr = expression.replace('^', '**').replace('ร—', '*').replace('รท', '/')
# Try to evaluate
result = sympify(clean_expr)
# If it's an equation, try to solve it
if '=' in expression:
# Extract variable and solve
parts = expression.split('=')
if len(parts) == 2:
eq = sympify(f"Eq({parts[0]}, {parts[1]})")
solution = solve(eq)
return f"Solution: {solution}"
# Evaluate numerically
numerical_result = N(result, 10) # 10 decimal places
return f"Result: {numerical_result}"
except Exception as e:
print(f"โŒ Math error: {e}")
return f"Could not calculate '{expression}': {str(e)}"
def __call__(self, question: str) -> str:
print(f"๐Ÿค” Processing: {question[:100]}...")
# Enhanced question analysis
question_lower = question.lower()
# Better detection of search needs
search_indicators = [
'who is', 'what is', 'when did', 'where is', 'current', 'latest', 'recent',
'today', 'news', 'winner', 'recipient', 'nationality', 'born in', 'died',
'malko', 'competition', 'award', 'century', 'president', 'capital of',
'population of', 'founded', 'established', 'discovery', 'invented'
]
# Math detection
math_indicators = [
'calculate', 'compute', 'solve', 'equation', 'sum', 'total', 'average',
'percentage', 'multiply', 'divide', 'add', 'subtract', '+', '-', '*', '/',
'=', 'x=', 'y=', 'find x', 'find y'
]
needs_search = any(indicator in question_lower for indicator in search_indicators)
needs_math = any(indicator in question_lower for indicator in math_indicators)
# Has numbers in question
has_numbers = bool(re.search(r'\d', question))
if has_numbers and any(op in question for op in ['+', '-', '*', '/', '=', '^']):
needs_math = True
try:
if self.agent:
# Use ReAct agent
response = self.agent.query(question)
response_str = str(response)
# Check response quality
if len(response_str.strip()) < 10 or any(bad in response_str.lower() for bad in ['error', 'sorry', 'cannot', "don't know"]):
print("โš ๏ธ Agent response seems poor, trying direct approach...")
return self._direct_approach(question, needs_search, needs_math)
return response_str
else:
return self._direct_approach(question, needs_search, needs_math)
except Exception as e:
print(f"โŒ Agent error: {str(e)}")
return self._direct_approach(question, needs_search, needs_math)
def _direct_approach(self, question: str, needs_search: bool, needs_math: bool) -> str:
"""Direct tool usage when agent fails"""
if needs_search:
# Extract better search terms
important_words = []
words = question.replace('?', '').split()
skip_words = {'what', 'when', 'where', 'who', 'how', 'is', 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
for word in words:
clean_word = word.lower().strip('.,!?;:')
if len(clean_word) > 2 and clean_word not in skip_words:
important_words.append(clean_word)
# Take up to 4 most important terms
search_query = ' '.join(important_words[:4])
if search_query:
result = self.web_search(search_query)
return f"Based on web search:\n\n{result}"
if needs_math:
# Extract mathematical expressions
math_expressions = re.findall(r'[\d+\-*/().\s=x]+', question)
for expr in math_expressions:
if any(op in expr for op in ['+', '-', '*', '/', '=']):
result = self.math_calculator(expr.strip())
return f"Mathematical calculation:\n{result}"
# Fallback: try to give a reasonable response
return f"I need more specific information to answer: {question[:100]}... Please provide additional context or rephrase your question."
def cleanup_memory():
"""Clean up GPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("๐Ÿงน GPU memory cleared")
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Enhanced submission with better error handling"""
space_id = os.getenv("SPACE_ID")
if not profile:
return "โŒ Please Login to Hugging Face first.", None
username = f"{profile.username}"
print(f"๐Ÿ‘ค User: {username}")
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
cleanup_memory()
# Initialize agent
try:
agent = SmartAgent()
except Exception as e:
print(f"โŒ Agent initialization failed: {e}")
return f"Failed to initialize agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# Fetch questions
try:
response = requests.get(questions_url, timeout=30)
response.raise_for_status()
questions_data = response.json()
print(f"๐Ÿ“‹ Fetched {len(questions_data)} questions")
except Exception as e:
return f"โŒ Error fetching questions: {e}", None
# Process questions with better tracking
results_log = []
answers_payload = []
for i, item in enumerate(questions_data, 1):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or not question_text:
continue
print(f"\n๐Ÿ”„ Question {i}/{len(questions_data)}: {task_id}")
print(f"Q: {question_text[:150]}...")
try:
answer = agent(question_text)
# Ensure answer is not empty or generic
if not answer or len(answer.strip()) < 3:
answer = f"Unable to process question: {question_text[:50]}..."
answers_payload.append({
"task_id": task_id,
"submitted_answer": answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Answer": answer[:150] + "..." if len(answer) > 150 else answer
})
print(f"โœ… A: {answer[:100]}...")
# Memory cleanup every 3 questions
if i % 3 == 0:
cleanup_memory()
except Exception as e:
print(f"โŒ Error on {task_id}: {e}")
error_answer = f"Processing error: {str(e)[:100]}"
answers_payload.append({
"task_id": task_id,
"submitted_answer": error_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Answer": error_answer
})
# Submit answers
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"\n๐Ÿ“ค Submitting {len(answers_payload)} answers...")
try:
response = requests.post(submit_url, json=submission_data, timeout=120)
response.raise_for_status()
result_data = response.json()
score = result_data.get('score', 0)
correct = result_data.get('correct_count', 0)
total = result_data.get('total_attempted', len(answers_payload))
final_status = f"""๐ŸŽ‰ Submission Complete!
๐Ÿ‘ค User: {result_data.get('username')}
๐Ÿ“Š Score: {score}% ({correct}/{total} correct)
๐Ÿ’ฌ {result_data.get('message', 'No message')}
Target: 30%+ โœ“ {'ACHIEVED!' if score >= 30 else 'Need improvement'}"""
print(f"โœ… Final Score: {score}%")
return final_status, pd.DataFrame(results_log)
except Exception as e:
error_msg = f"โŒ Submission failed: {str(e)}"
print(error_msg)
return error_msg, pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks(title="Optimized Agent Evaluation", theme=gr.themes.Soft()) as demo:
gr.Markdown("# ๐Ÿš€ Optimized Agent for 16GB Memory")
gr.Markdown("""
**Target: 30%+ Score**
**Optimizations:**
- ๐Ÿง  Better model selection (flan-t5-large)
- ๐Ÿ” Enhanced web search with DuckDuckGo
- ๐Ÿงฎ Advanced math calculator with SymPy
- ๐ŸŽฏ Improved question analysis and routing
- ๐Ÿ’พ Memory management for 16GB systems
- ๐Ÿ”ง Robust error handling and fallbacks
""")
with gr.Row():
gr.LoginButton(scale=1)
with gr.Row():
run_button = gr.Button(
"๐Ÿš€ Run Optimized Evaluation",
variant="primary",
size="lg",
scale=2
)
status_output = gr.Textbox(
label="๐Ÿ“Š Status & Results",
lines=10,
interactive=False,
placeholder="Ready to run evaluation..."
)
results_table = gr.DataFrame(
label="๐Ÿ“ Detailed Results",
wrap=True
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("๐Ÿš€ Starting Optimized Agent for 16GB Memory...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)