Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
import json | |
import re | |
import io | |
import base64 | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from pathlib import Path | |
# SmolaAgent imports | |
from smolagents import CodeAgent, tool, DuckDuckGoSearchTool, PythonInterpreterTool | |
from smolagents.models import LiteLLMModel | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Enhanced Tools for GAIA --- | |
def web_search_tool(query: str) -> str: | |
""" | |
Search the web for information using DuckDuckGo. | |
Args: | |
query: The search query string | |
Returns: | |
String containing search results | |
""" | |
try: | |
search_tool = DuckDuckGoSearchTool() | |
results = search_tool(query) | |
return str(results) | |
except Exception as e: | |
return f"Search failed: {str(e)}" | |
def calculator_tool(expression: str) -> str: | |
""" | |
Evaluate mathematical expressions safely. | |
Args: | |
expression: Mathematical expression as string | |
Returns: | |
Result of the calculation | |
""" | |
try: | |
# Safe evaluation - only allow basic math operations | |
allowed_chars = set('0123456789+-*/.() ') | |
if not all(c in allowed_chars for c in expression.replace(' ', '')): | |
return "Error: Expression contains invalid characters" | |
result = eval(expression) | |
return str(result) | |
except Exception as e: | |
return f"Calculation error: {str(e)}" | |
def image_analyzer_tool(image_path: str) -> str: | |
""" | |
Analyze images and extract information. | |
Args: | |
image_path: Path to the image file | |
Returns: | |
Description of image content | |
""" | |
try: | |
if not os.path.exists(image_path): | |
return "Error: Image file not found" | |
img = Image.open(image_path) | |
# Basic image analysis | |
width, height = img.size | |
mode = img.mode | |
format_info = img.format if img.format else "Unknown" | |
# Simple color analysis | |
if mode == 'RGB': | |
colors = img.getcolors(maxcolors=256*256*256) | |
if colors: | |
dominant_color = max(colors, key=lambda x: x[0])[1] | |
color_info = f"Dominant color: RGB{dominant_color}" | |
else: | |
color_info = "Complex color palette" | |
else: | |
color_info = f"Color mode: {mode}" | |
analysis = f"""Image Analysis: | |
- Dimensions: {width}x{height} pixels | |
- Format: {format_info} | |
- {color_info} | |
- File size: {os.path.getsize(image_path)} bytes | |
""" | |
return analysis | |
except Exception as e: | |
return f"Image analysis error: {str(e)}" | |
def file_reader_tool(file_path: str) -> str: | |
""" | |
Read and analyze various file types (text, CSV, JSON, etc.). | |
Args: | |
file_path: Path to the file | |
Returns: | |
File content or analysis | |
""" | |
try: | |
if not os.path.exists(file_path): | |
return "Error: File not found" | |
file_ext = Path(file_path).suffix.lower() | |
if file_ext == '.csv': | |
df = pd.read_csv(file_path) | |
return f"CSV file with {len(df)} rows and {len(df.columns)} columns.\nColumns: {list(df.columns)}\nFirst 5 rows:\n{df.head().to_string()}" | |
elif file_ext == '.json': | |
with open(file_path, 'r', encoding='utf-8') as f: | |
data = json.load(f) | |
return f"JSON file content:\n{json.dumps(data, indent=2)[:1000]}..." | |
elif file_ext in ['.txt', '.md', '.py', '.js', '.html', '.css']: | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return f"Text file content ({len(content)} characters):\n{content[:1000]}..." | |
else: | |
return f"Binary file: {file_ext}, size: {os.path.getsize(file_path)} bytes" | |
except Exception as e: | |
return f"File reading error: {str(e)}" | |
def data_processor_tool(data: str, operation: str) -> str: | |
""" | |
Process data with various operations (sort, filter, calculate statistics). | |
Args: | |
data: Data as string (JSON, CSV format, or numbers) | |
operation: Operation to perform (sort, sum, average, count, etc.) | |
Returns: | |
Processed data result | |
""" | |
try: | |
# Try to parse as JSON first | |
try: | |
parsed_data = json.loads(data) | |
except: | |
# Try to parse as numbers | |
try: | |
parsed_data = [float(x.strip()) for x in data.replace(',', ' ').split() if x.strip()] | |
except: | |
return "Error: Could not parse data" | |
if operation.lower() == 'sum' and isinstance(parsed_data, list): | |
return str(sum([x for x in parsed_data if isinstance(x, (int, float))])) | |
elif operation.lower() == 'average' and isinstance(parsed_data, list): | |
nums = [x for x in parsed_data if isinstance(x, (int, float))] | |
return str(sum(nums) / len(nums) if nums else 0) | |
elif operation.lower() == 'count': | |
return str(len(parsed_data)) | |
elif operation.lower() == 'sort' and isinstance(parsed_data, list): | |
return str(sorted(parsed_data)) | |
elif operation.lower() == 'max' and isinstance(parsed_data, list): | |
nums = [x for x in parsed_data if isinstance(x, (int, float))] | |
return str(max(nums) if nums else "No numbers found") | |
elif operation.lower() == 'min' and isinstance(parsed_data, list): | |
nums = [x for x in parsed_data if isinstance(x, (int, float))] | |
return str(min(nums) if nums else "No numbers found") | |
else: | |
return f"Unsupported operation: {operation}" | |
except Exception as e: | |
return f"Data processing error: {str(e)}" | |
# --- Enhanced GAIA Agent --- | |
class GAIAAgent: | |
def __init__(self): | |
print("GAIAAgent initialized with SmolaAgent framework.") | |
# Initialize model - using a lightweight model for resource efficiency | |
try: | |
# Use HuggingFace's free inference API or local model | |
self.model = LiteLLMModel( | |
model_id="microsoft/DialoGPT-medium", # Lightweight model | |
max_tokens=512, | |
temperature=0.1 | |
) | |
except: | |
# Fallback to a basic model | |
print("Warning: Using fallback model configuration") | |
self.model = None | |
# Initialize tools | |
self.tools = [ | |
web_search_tool, | |
calculator_tool, | |
image_analyzer_tool, | |
file_reader_tool, | |
data_processor_tool, | |
PythonInterpreterTool() | |
] | |
# Initialize the agent | |
try: | |
self.agent = CodeAgent( | |
tools=self.tools, | |
model=self.model, | |
max_iterations=5, | |
verbosity_level=1 | |
) | |
except Exception as e: | |
print(f"Agent initialization error: {e}") | |
self.agent = None | |
def __call__(self, question: str) -> str: | |
print(f"GAIAAgent processing question: {question[:100]}...") | |
if not self.agent: | |
# Fallback logic if agent failed to initialize | |
return self._fallback_processing(question) | |
try: | |
# Enhanced prompt for GAIA tasks | |
enhanced_prompt = f""" | |
You are a helpful AI assistant designed to solve complex real-world problems that may require: | |
- Web searching for current information | |
- Mathematical calculations | |
- Image analysis | |
- File processing | |
- Multi-step reasoning | |
Question: {question} | |
Please approach this systematically: | |
1. Analyze what type of problem this is | |
2. Determine what tools/information you need | |
3. Use available tools to gather information | |
4. Reason through the problem step by step | |
5. Provide a clear, concise final answer | |
Remember to be precise and factual in your response. | |
""" | |
response = self.agent.run(enhanced_prompt) | |
# Extract the final answer if it's in the response | |
if isinstance(response, str): | |
# Look for common answer patterns | |
answer_patterns = [ | |
r"Final answer:?\s*(.+)", | |
r"Answer:?\s*(.+)", | |
r"The answer is:?\s*(.+)", | |
r"Result:?\s*(.+)" | |
] | |
for pattern in answer_patterns: | |
match = re.search(pattern, response, re.IGNORECASE) | |
if match: | |
return match.group(1).strip() | |
# If no pattern found, return the last sentence or the whole response | |
sentences = response.split('.') | |
return sentences[-1].strip() if sentences else response | |
return str(response) | |
except Exception as e: | |
print(f"Error in agent processing: {e}") | |
return self._fallback_processing(question) | |
def _fallback_processing(self, question: str) -> str: | |
"""Fallback processing when main agent fails""" | |
try: | |
# Simple heuristic-based processing | |
question_lower = question.lower() | |
# Math questions | |
if any(op in question for op in ['+', '-', '*', '/', 'calculate', 'sum', 'average']): | |
# Extract numbers and try basic calculation | |
numbers = re.findall(r'-?\d+\.?\d*', question) | |
if len(numbers) >= 2: | |
try: | |
if 'sum' in question_lower or '+' in question: | |
result = sum(float(n) for n in numbers) | |
return str(result) | |
elif 'average' in question_lower: | |
result = sum(float(n) for n in numbers) / len(numbers) | |
return str(result) | |
except: | |
pass | |
# Search-based questions | |
if any(word in question_lower for word in ['what', 'who', 'when', 'where', 'how', 'why']): | |
try: | |
search_result = web_search_tool(question) | |
# Extract key information from search results | |
lines = search_result.split('\n') | |
relevant_lines = [line for line in lines if len(line.strip()) > 20] | |
return relevant_lines[0] if relevant_lines else "Unable to find specific information" | |
except: | |
pass | |
# Default response | |
return "I need more context or tools to answer this question accurately." | |
except Exception as e: | |
return f"Processing error: {str(e)}" | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the GAIAAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent | |
try: | |
agent = GAIAAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run GAIA Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running GAIA agent on {len(questions_data)} questions...") | |
for i, item in enumerate(questions_data): | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}") | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
"Submitted Answer": submitted_answer | |
}) | |
print(f"Answer for {task_id}: {submitted_answer[:50]}...") | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
error_answer = f"AGENT ERROR: {e}" | |
answers_payload.append({"task_id": task_id, "submitted_answer": error_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, | |
"Submitted Answer": error_answer | |
}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"GAIA Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# GAIA Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Enhanced GAIA Agent with SmolaAgent Framework** | |
This agent is equipped with: | |
- ๐ Web search capabilities (DuckDuckGo) | |
- ๐งฎ Mathematical calculator | |
- ๐ผ๏ธ Image analysis | |
- ๐ File processing (CSV, JSON, text files) | |
- ๐ Data processing and statistics | |
- ๐ Python code execution | |
**Instructions:** | |
1. Log in to your Hugging Face account using the button below | |
2. Click 'Run GAIA Evaluation & Submit All Answers' to start the evaluation | |
3. The agent will process each question systematically using available tools | |
**Note:** Processing may take time as the agent analyzes each question thoroughly. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run GAIA Evaluation & Submit All Answers", variant="primary") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " GAIA Agent Starting " + "-"*30) | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") | |
if space_host_startup: | |
print(f"โ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("โน๏ธ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: | |
print(f"โ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("โน๏ธ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" GAIA Agent Starting ")) + "\n") | |
print("Launching Gradio Interface for GAIA Agent Evaluation...") | |
demo.launch(debug=True, share=False) |