Spaces:
Runtime error
Runtime error
File size: 10,730 Bytes
574b6ca d591a7a 086b425 d591a7a 0f20e93 d591a7a d66e9b7 9f29ca9 8c139ea f0b3f91 8c139ea 9f29ca9 757ebd9 d66e9b7 3db6293 d66e9b7 9f29ca9 d66e9b7 e80aab9 d66e9b7 f0b3f91 9f29ca9 d591a7a f0b3f91 cccb073 d66e9b7 8c139ea d66e9b7 d3c0517 d66e9b7 d591a7a 25405da 8c139ea 9f29ca9 d66e9b7 d591a7a d66e9b7 d591a7a d66e9b7 d591a7a 9f29ca9 d66e9b7 9f29ca9 8c139ea d66e9b7 9f29ca9 d66e9b7 9f29ca9 d66e9b7 d591a7a d66e9b7 d591a7a d66e9b7 cccb073 d66e9b7 d591a7a d66e9b7 d591a7a 8c139ea d66e9b7 d591a7a d66e9b7 d591a7a d66e9b7 d591a7a d66e9b7 d591a7a d66e9b7 d591a7a d66e9b7 bbb34b9 d591a7a d66e9b7 d591a7a cccb073 d66e9b7 0f20e93 8c139ea cccb073 d66e9b7 d3c0517 d66e9b7 cccb073 d3c0517 d66e9b7 c66203c d66e9b7 8c139ea d66e9b7 cccb073 d66e9b7 8c139ea d66e9b7 8c139ea d66e9b7 d591a7a d66e9b7 8c139ea d66e9b7 d591a7a d66e9b7 d591a7a d66e9b7 19b7914 d66e9b7 03ca047 d66e9b7 d591a7a cccb073 d66e9b7 d3c0517 d66e9b7 19b7914 eccf8e4 d66e9b7 a39e119 d66e9b7 d3c0517 8c139ea d66e9b7 bbb34b9 d66e9b7 8c139ea d66e9b7 f96a820 8c139ea d66e9b7 d3c0517 d66e9b7 d3c0517 d66e9b7 d3c0517 e80aab9 d66e9b7 d3c0517 d66e9b7 7963312 d66e9b7 7963312 d66e9b7 8c139ea d66e9b7 8c139ea d66e9b7 9f29ca9 d66e9b7 e80aab9 d66e9b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import os
import gradio as gr
import requests
import json
import re
import numexpr
import pandas as pd
import math
from pdfminer.high_level import extract_text
from bs4 import BeautifulSoup
from typing import Dict, Any, List, Tuple, Optional
from dotenv import load_dotenv
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
import time
import gc
# --- Load Environment Variables ---
load_dotenv()
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_STEPS = 6 # Increased from 4
MAX_TOKENS = 256 # Increased from 128
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
TIMEOUT_PER_QUESTION = 45 # Increased from 30
MAX_RESULT_LENGTH = 500 # For tool outputs
# --- Model Loading ---
print("Loading optimized model...")
start_time = time.time()
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="auto",
low_cpu_mem_usage=True
)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
use_fast=True,
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print(f"Model loaded in {time.time() - start_time:.2f} seconds")
# --- Enhanced Tools ---
def web_search(query: str) -> str:
"""Enhanced web search with better result parsing"""
try:
if SERPER_API_KEY:
params = {'q': query, 'num': 3, 'hl': 'en', 'gl': 'us'}
headers = {'X-API-KEY': SERPER_API_KEY}
response = requests.post(
'https://google.serper.dev/search',
headers=headers,
json=params,
timeout=10
)
results = response.json()
if 'organic' in results:
output = []
for r in results['organic'][:3]:
if 'title' in r and 'snippet' in r:
output.append(f"{r['title']}: {r['snippet']}")
return "\n".join(output)[:MAX_RESULT_LENGTH]
return "No relevant results found"
else:
with DDGS() as ddgs:
results = [r for r in ddgs.text(query, max_results=3)]
return "\n".join([f"{r['title']}: {r['body']}" for r in results])[:MAX_RESULT_LENGTH]
except Exception as e:
return f"Search error: {str(e)}"
def calculator(expression: str) -> str:
"""More robust calculator with validation"""
try:
# Clean and validate expression
expression = re.sub(r'[^\d+\-*/().^%,\s]', '', expression)
if not expression:
return "Invalid empty expression"
# Handle percentages and commas
expression = expression.replace('%', '/100').replace(',', '')
result = numexpr.evaluate(expression)
return str(float(result))
except Exception as e:
return f"Calculation error: {str(e)}"
def read_pdf(file_path: str) -> str:
"""PDF reader with better text extraction"""
try:
text = extract_text(file_path)
if not text:
return "No readable text found in PDF"
# Clean and condense text
text = re.sub(r'\s+', ' ', text).strip()
return text[:MAX_RESULT_LENGTH]
except Exception as e:
return f"PDF read error: {str(e)}"
def read_webpage(url: str) -> str:
"""Improved webpage reader with better content extraction"""
try:
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, timeout=10, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
# Remove unwanted elements
for element in soup(['script', 'style', 'nav', 'footer']):
element.decompose()
# Get text with better formatting
text = soup.get_text(separator='\n', strip=True)
text = re.sub(r'\n{3,}', '\n\n', text)
return text[:MAX_RESULT_LENGTH] if text else "No main content found"
except Exception as e:
return f"Webpage read error: {str(e)}"
TOOLS = {
"web_search": web_search,
"calculator": calculator,
"read_pdf": read_pdf,
"read_webpage": read_webpage
}
# --- Improved GAIA Agent ---
class GAIA_Agent:
def __init__(self):
self.tools = TOOLS
self.system_prompt = """You are an advanced GAIA problem solver. Follow these steps:
1. Analyze the question carefully
2. Choose the most appropriate tool
3. Process the results
4. Provide a precise final answer
Available Tools:
- web_search: For general knowledge questions
- calculator: For math problems
- read_pdf: For PDF content extraction
- read_webpage: For webpage content extraction
Tool format: ```json
{"tool": "tool_name", "args": {"arg1": value}}```
Always end with: Final Answer: [your answer]"""
def __call__(self, question: str) -> str:
start_time = time.time()
history = [f"Question: {question}"]
try:
for step in range(MAX_STEPS):
if time.time() - start_time > TIMEOUT_PER_QUESTION:
return "Timeout: Processing took too long"
prompt = self._build_prompt(history)
response = self._call_model(prompt)
if "Final Answer:" in response:
answer = response.split("Final Answer:")[-1].strip()
return answer[:500] # Limit answer length
tool_call = self._parse_tool_call(response)
if tool_call:
tool_name, args = tool_call
observation = self._use_tool(tool_name, args)
history.append(f"Tool Used: {tool_name}")
history.append(f"Tool Result: {observation[:300]}...") # Truncate long results
else:
history.append(f"Analysis: {response}")
gc.collect()
return "Maximum steps reached without final answer"
except Exception as e:
return f"Error: {str(e)}"
def _build_prompt(self, history: List[str]) -> str:
return f"<|system|>\n{self.system_prompt}<|end|>\n<|user|>\n" + "\n".join(history) + "<|end|>\n<|assistant|>"
def _call_model(self, prompt: str) -> str:
inputs = tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=3072,
padding=False
)
generation_config = GenerationConfig(
max_new_tokens=MAX_TOKENS,
temperature=0.3,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.pad_token_id
)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
generation_config=generation_config,
attention_mask=inputs.attention_mask
)
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("<|assistant|>")[-1].strip()
def _parse_tool_call(self, text: str) -> Optional[Tuple[str, Dict]]:
try:
json_match = re.search(r'```json\s*({.+?})\s*```', text, re.DOTALL)
if json_match:
tool_call = json.loads(json_match.group(1))
if "tool" in tool_call and "args" in tool_call:
return tool_call["tool"], tool_call["args"]
except:
return None
return None
def _use_tool(self, tool_name: str, args: Dict) -> str:
if tool_name not in self.tools:
return f"Unknown tool: {tool_name}"
try:
# Special handling for URL-containing questions
if tool_name == "read_webpage" and "url" not in args:
if "args" in args and isinstance(args["args"], dict) and "url" in args["args"]:
args = args["args"]
elif "http" in str(args):
url = re.search(r'https?://[^\s]+', str(args)).group()
args = {"url": url}
return str(self.tools[tool_name](**args))[:MAX_RESULT_LENGTH]
except Exception as e:
return f"Tool error: {str(e)}"
# --- Evaluation Runner ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
if not profile:
return "Please login first", None
agent = GAIA_Agent()
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
try:
response = requests.get(questions_url, timeout=15)
questions_data = response.json()
except Exception as e:
return f"Failed to get questions: {str(e)}", None
results = []
answers = []
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question = item.get("question")
if not task_id or not question:
continue
print(f"Processing question {i+1}/{len(questions_data)}")
answer = agent(question)
answers.append({"task_id": task_id, "submitted_answer": answer})
results.append({
"Task ID": task_id,
"Question": question[:100] + "..." if len(question) > 100 else question,
"Answer": answer[:100] + "..." if len(answer) > 100 else answer
})
submission = {
"username": profile.username,
"agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}",
"answers": answers
}
try:
response = requests.post(submit_url, json=submission, timeout=30)
result = response.json()
return f"Submitted! Score: {result.get('score', 'N/A')}", pd.DataFrame(results)
except Exception as e:
return f"Submission failed: {str(e)}", pd.DataFrame(results)
# --- Gradio Interface ---
with gr.Blocks(title="Enhanced GAIA Agent") as demo:
gr.Markdown("## 🚀 Enhanced GAIA Agent Evaluation")
gr.Markdown("""
Improved version with:
- Better tool utilization
- Increased step/token limits
- Enhanced error handling
""")
with gr.Row():
gr.LoginButton()
run_btn = gr.Button("Run Evaluation", variant="primary")
output_status = gr.Textbox(label="Status")
results_table = gr.DataFrame(label="Results")
run_btn.click(
run_and_submit_all,
outputs=[output_status, results_table]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |