File size: 23,550 Bytes
9f29ca9
 
 
 
 
 
 
 
 
 
 
d591a7a
9f29ca9
d591a7a
9f29ca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import os
import gradio as gr
import requests
import pandas as pd
import re
import time
import json
from typing import Dict, Any, List, Optional, Tuple
from io import StringIO
import ast
import math

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

class GAIASpecializedSearchEngine:
    """GAIA-specialized search engine with improved result processing"""
    
    def __init__(self):
        self.session = requests.Session()
        self.session.headers.update({
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
        })
        self.serper_api_key = os.getenv("SERPER_API_KEY")
        self.search_cache = {}
    
    def search_with_serper(self, query: str, num_results: int = 10) -> Dict[str, Any]:
        """Enhanced Serper search with better parameters"""
        if not self.serper_api_key:
            return {}
        
        cache_key = f"{query}_{num_results}"
        if cache_key in self.search_cache:
            return self.search_cache[cache_key]
        
        try:
            url = "https://google.serper.dev/search"
            payload = {
                "q": query,
                "num": num_results,
                "gl": "us",
                "hl": "en"
            }
            headers = {
                "X-API-KEY": self.serper_api_key,
                "Content-Type": "application/json"
            }
            
            response = self.session.post(url, json=payload, headers=headers, timeout=25)
            if response.status_code == 200:
                result = response.json()
                self.search_cache[cache_key] = result
                return result
            else:
                print(f"Search API error: {response.status_code}")
                return {}
                
        except Exception as e:
            print(f"Search error: {e}")
            return {}
    
    def comprehensive_search(self, query: str) -> Dict[str, Any]:
        """Return full search data structure instead of just text"""
        print(f"๐Ÿ” Searching: {query[:100]}...")
        return self.search_with_serper(query, 15)

class GAIAQuestionSolver:
    """Improved solver for GAIA benchmark questions"""
    
    def __init__(self):
        self.search_engine = GAIASpecializedSearchEngine()
    
    def solve_question(self, question: str) -> str:
        """Main solving method with improved pattern detection"""
        print(f"๐Ÿค” Analyzing: {question[:100]}...")
        
        # Handle actual reversed text questions (very specific detection)
        if self.is_genuine_reversed_text_question(question):
            return self.solve_reversed_text(question)
        
        # Handle computational questions
        if self.is_computational_question(question):
            return self.solve_computational_question(question)
        
        # Handle person/actor questions
        if self.is_person_question(question):
            return self.solve_person_question(question)
        
        # Handle location/geography questions
        if self.is_location_question(question):
            return self.solve_location_question(question)
        
        # Handle numerical/counting questions
        if self.is_numerical_question(question):
            return self.solve_numerical_question(question)
        
        # Handle date/time questions
        if self.is_date_question(question):
            return self.solve_date_question(question)
        
        # Default factual search
        return self.solve_general_question(question)
    
    def is_genuine_reversed_text_question(self, question: str) -> bool:
        """Very specific detection for actual reversed text questions"""
        # Only trigger if we see obvious reversed words that don't make sense in English
        reversed_words = re.findall(r'\b[a-z]{4,}\b', question.lower())
        genuine_reversed = []
        
        for word in reversed_words:
            reversed_word = word[::-1]
            # Check if the reversed version is a common English word
            common_words = ['left', 'right', 'opposite', 'answer', 'word', 'text']
            if reversed_word in common_words:
                genuine_reversed.append((word, reversed_word))
        
        return len(genuine_reversed) > 0
    
    def solve_reversed_text(self, question: str) -> str:
        """Solve genuine reversed text questions"""
        words = question.lower().split()
        for word in words:
            if len(word) >= 4:
                reversed_word = word[::-1]
                if reversed_word == 'left':
                    return 'right'
                elif reversed_word == 'right':
                    return 'left'
                elif reversed_word == 'opposite':
                    # Find what the opposite of
                    word_index = words.index(word)
                    if word_index + 1 < len(words):
                        next_word = words[word_index + 1][::-1]
                        opposites = {'left': 'right', 'right': 'left', 'up': 'down', 'down': 'up'}
                        return opposites.get(next_word, next_word)
        
        return "Could not determine reversed text answer"
    
    def is_computational_question(self, question: str) -> bool:
        """Detect questions requiring computation"""
        comp_keywords = ['calculate', 'compute', 'sum', 'total', 'multiply', 'divide', 'add', 'subtract']
        return any(keyword in question.lower() for keyword in comp_keywords)
    
    def solve_computational_question(self, question: str) -> str:
        """Solve computational questions"""
        # Extract numbers from the question
        numbers = re.findall(r'-?\d+\.?\d*', question)
        
        if len(numbers) >= 2:
            try:
                nums = [float(n) for n in numbers]
                
                if any(word in question.lower() for word in ['sum', 'add', 'total', '+']):
                    result = sum(nums)
                elif any(word in question.lower() for word in ['multiply', 'times', '*']):
                    result = 1
                    for n in nums:
                        result *= n
                elif any(word in question.lower() for word in ['subtract', 'minus', '-']):
                    result = nums[0] - nums[1]
                elif any(word in question.lower() for word in ['divide', '/']):
                    result = nums[0] / nums[1] if nums[1] != 0 else 0
                else:
                    # Search for the computational context
                    return self.search_and_extract_number(question)
                
                # Return as integer if it's a whole number
                return str(int(result)) if result.is_integer() else str(result)
            except:
                pass
        
        return self.search_and_extract_number(question)
    
    def is_person_question(self, question: str) -> bool:
        """Detect questions about people"""
        person_keywords = ['who', 'actor', 'person', 'name', 'character', 'played', 'starred']
        return any(keyword in question.lower() for keyword in person_keywords)
    
    def solve_person_question(self, question: str) -> str:
        """Solve questions about people with improved search"""
        data = self.search_engine.comprehensive_search(question)
        
        if not data:
            return "Person information not found"
        
        # Check answer box first
        if "answerBox" in data and "answer" in data["answerBox"]:
            answer = data["answerBox"]["answer"].strip()
            if self.looks_like_person_name(answer):
                return self.format_person_answer(answer, question)
        
        # Check knowledge graph
        if "knowledgeGraph" in data:
            kg = data["knowledgeGraph"]
            if "title" in kg and self.looks_like_person_name(kg["title"]):
                return self.format_person_answer(kg["title"], question)
        
        # Extract from organic results
        all_text = ""
        for result in data.get("organic", [])[:5]:
            all_text += f"{result.get('title', '')} {result.get('snippet', '')} "
        
        return self.extract_person_from_text(all_text, question)
    
    def looks_like_person_name(self, text: str) -> bool:
        """Check if text looks like a person's name"""
        if not text or len(text) > 50:
            return False
        
        # Simple heuristic: 1-4 capitalized words, reasonable length
        words = text.split()
        if 1 <= len(words) <= 4:
            return all(word[0].isupper() and word.isalpha() for word in words if word)
        return False
    
    def format_person_answer(self, name: str, question: str) -> str:
        """Format person answer based on what the question asks for"""
        words = name.split()
        q_lower = question.lower()
        
        if 'first name' in q_lower and words:
            return words[0]
        elif any(term in q_lower for term in ['last name', 'surname']) and words:
            return words[-1]
        else:
            return name
    
    def extract_person_from_text(self, text: str, question: str) -> str:
        """Extract person names from text"""
        # Find potential names (2-3 capitalized words)
        names = re.findall(r'\b[A-Z][a-z]+ [A-Z][a-z]+(?:\s[A-Z][a-z]+)?\b', text)
        
        # Filter out common non-names
        exclude = {'The New', 'New York', 'Los Angeles', 'Las Vegas', 'United States'}
        valid_names = [name for name in names if name not in exclude and len(name.split()) <= 3]
        
        if valid_names:
            return self.format_person_answer(valid_names[0], question)
        
        return "Person name not found"
    
    def is_location_question(self, question: str) -> bool:
        """Detect location/geography questions"""
        location_keywords = ['where', 'country', 'city', 'state', 'location', 'place', 'born in', 'from']
        return any(keyword in question.lower() for keyword in location_keywords)
    
    def solve_location_question(self, question: str) -> str:
        """Solve location questions"""
        data = self.search_engine.comprehensive_search(question)
        
        if not data:
            return "Location not found"
        
        # Check answer box
        if "answerBox" in data and "answer" in data["answerBox"]:
            answer = data["answerBox"]["answer"].strip()
            if self.looks_like_location(answer):
                return answer
        
        # Extract from results
        all_text = ""
        for result in data.get("organic", [])[:3]:
            all_text += f"{result.get('snippet', '')} "
        
        return self.extract_location_from_text(all_text)
    
    def looks_like_location(self, text: str) -> bool:
        """Check if text looks like a location"""
        if not text or len(text) > 100:
            return False
        
        location_indicators = ['University', 'College', 'City', 'County', 'State', 'Country']
        return any(indicator in text for indicator in location_indicators) or len(text.split()) <= 4
    
    def extract_location_from_text(self, text: str) -> str:
        """Extract location from text"""
        # Look for patterns like "in [Location]", "at [Location]", "[Location] University"
        location_patterns = [
            r'\bin ([A-Z][a-z]+(?: [A-Z][a-z]+)*)',
            r'\bat ([A-Z][a-z]+(?: [A-Z][a-z]+)*)',
            r'([A-Z][a-z]+(?: [A-Z][a-z]+)*) University',
            r'([A-Z][a-z]+(?: [A-Z][a-z]+)*) College',
        ]
        
        for pattern in location_patterns:
            matches = re.findall(pattern, text)
            if matches:
                return matches[0]
        
        # Fallback: look for capitalized phrases
        locations = re.findall(r'\b[A-Z][a-z]+(?: [A-Z][a-z]+)*\b', text)
        if locations:
            return locations[0]
        
        return "Location not found"
    
    def is_numerical_question(self, question: str) -> bool:
        """Detect questions asking for numbers"""
        numerical_keywords = ['how many', 'how much', 'number of', 'count', 'total']
        return any(keyword in question.lower() for keyword in numerical_keywords)
    
    def solve_numerical_question(self, question: str) -> str:
        """Solve questions asking for numbers"""
        return self.search_and_extract_number(question)
    
    def search_and_extract_number(self, question: str) -> str:
        """Search and extract numerical answers"""
        data = self.search_engine.comprehensive_search(question)
        
        if not data:
            return "Number not found"
        
        # Check answer box first
        if "answerBox" in data and "answer" in data["answerBox"]:
            answer = data["answerBox"]["answer"].strip()
            numbers = re.findall(r'\b\d+(?:,\d{3})*(?:\.\d+)?\b', answer)
            if numbers:
                return numbers[0].replace(',', '')
        
        # Extract from snippets
        all_text = ""
        for result in data.get("organic", [])[:5]:
            all_text += f"{result.get('snippet', '')} "
        
        # Look for numbers in context
        sentences = re.split(r'[.!?]', all_text)
        for sentence in sentences[:10]:
            numbers = re.findall(r'\b\d+(?:,\d{3})*(?:\.\d+)?\b', sentence)
            if numbers:
                # Try to find the most relevant number
                q_lower = question.lower()
                if any(word in sentence.lower() for word in q_lower.split()[:3]):
                    return numbers[0].replace(',', '')
        
        # Fallback: return first number found
        all_numbers = re.findall(r'\b\d+(?:,\d{3})*(?:\.\d+)?\b', all_text)
        if all_numbers:
            return all_numbers[0].replace(',', '')
        
        return "Number not found"
    
    def is_date_question(self, question: str) -> bool:
        """Detect date/time questions"""
        date_keywords = ['when', 'year', 'date', 'born', 'died', 'founded', 'established']
        return any(keyword in question.lower() for keyword in date_keywords)
    
    def solve_date_question(self, question: str) -> str:
        """Solve date questions"""
        data = self.search_engine.comprehensive_search(question)
        
        if not data:
            return "Date not found"
        
        # Check answer box
        if "answerBox" in data and "answer" in data["answerBox"]:
            answer = data["answerBox"]["answer"].strip()
            years = re.findall(r'\b(?:19|20)\d{2}\b', answer)
            dates = re.findall(r'\b(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{1,2},?\s+(?:19|20)\d{2}\b', answer)
            if dates:
                return dates[0]
            elif years:
                return years[0]
        
        # Extract from snippets
        all_text = ""
        for result in data.get("organic", [])[:3]:
            all_text += f"{result.get('snippet', '')} "
        
        # Look for dates and years
        dates = re.findall(r'\b(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{1,2},?\s+(?:19|20)\d{2}\b', all_text)
        if dates:
            return dates[0]
        
        years = re.findall(r'\b(?:19|20)\d{2}\b', all_text)
        if years:
            return years[0]
        
        return "Date not found"
    
    def solve_general_question(self, question: str) -> str:
        """Solve general factual questions"""
        data = self.search_engine.comprehensive_search(question)
        
        if not data:
            return "Information not found"
        
        # Check answer box first - this is usually the best answer
        if "answerBox" in data:
            answer_box = data["answerBox"]
            if "answer" in answer_box:
                return answer_box["answer"].strip()
            elif "snippet" in answer_box:
                return answer_box["snippet"].strip()
        
        # Check knowledge graph
        if "knowledgeGraph" in data:
            kg = data["knowledgeGraph"]
            if "description" in kg:
                return kg["description"].strip()
        
        # Get the most relevant snippet from organic results
        for result in data.get("organic", [])[:3]:
            snippet = result.get("snippet", "")
            if snippet and len(snippet.strip()) > 10:
                return snippet.strip()
        
        return "Answer not found in search results"

def get_api_status():
    """Check API configuration status"""
    if os.getenv("SERPER_API_KEY"):
        return "โœ… Serper API: Configured and Ready"
    else:
        return "โŒ Serper API: Not configured - Set SERPER_API_KEY environment variable"

def run_gaia_evaluation(profile: gr.OAuthProfile | None):
    """Run GAIA evaluation with improved solver"""
    if not profile:
        return "Please log in to Hugging Face first.", None
    
    api_status = get_api_status()
    if "โŒ" in api_status:
        return f"โš ๏ธ Configuration Error!\n\n{api_status}\n\nGet your free API key at: https://serper.dev", None
    
    username = profile.username
    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"
    
    try:
        solver = GAIAQuestionSolver()
        print("โœ… GAIA improved solver initialized")
    except Exception as e:
        return f"โŒ Solver initialization failed: {e}", None
    
    try:
        print("๐Ÿ“ฅ Fetching GAIA questions...")
        response = requests.get(questions_url, timeout=30)
        response.raise_for_status()
        questions = response.json()
        print(f"โœ… Retrieved {len(questions)} questions")
    except Exception as e:
        return f"โŒ Failed to fetch questions: {e}", None
    
    answers = []
    detailed_logs = []
    
    for i, item in enumerate(questions):
        task_id = item.get("task_id")
        question = item.get("question")
        
        if not task_id or not question:
            continue
        
        print(f"\n๐Ÿ”„ Processing {i+1}/{len(questions)}: {task_id}")
        
        try:
            start_time = time.time()
            answer = solver.solve_question(question)
            processing_time = time.time() - start_time
            
            answers.append({"task_id": task_id, "submitted_answer": answer})
            detailed_logs.append({
                "Task ID": task_id,
                "Question Preview": question[:120] + "..." if len(question) > 120 else question,
                "Answer": answer[:80] + "..." if len(answer) > 80 else answer,
                "Processing Time": f"{processing_time:.2f}s"
            })
            
            print(f"โœ… Answer: {answer}")
            
            # Rate limiting
            time.sleep(0.5)
            
        except Exception as e:
            error_msg = f"Processing error: {str(e)}"
            answers.append({"task_id": task_id, "submitted_answer": error_msg})
            detailed_logs.append({
                "Task ID": task_id,
                "Question Preview": question[:120] + "..." if len(question) > 120 else question,
                "Answer": error_msg,
                "Processing Time": "Error"
            })
            print(f"โŒ Error processing {task_id}: {e}")
    
    # Submit answers
    print(f"\n๐Ÿ“ค Submitting {len(answers)} answers to GAIA benchmark...")
    submission_payload = {
        "username": username,
        "agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID', 'your-space')}/tree/main",
        "answers": answers
    }
    
    try:
        submit_response = requests.post(submit_url, json=submission_payload, timeout=240)
        submit_response.raise_for_status()
        result_data = submit_response.json()
        
        score = result_data.get('score', 'N/A')
        correct_count = result_data.get('correct_count', '?')
        total_attempted = result_data.get('total_attempted', '?')
        
        results_summary = f"""๐ŸŽฏ GAIA BENCHMARK RESULTS (IMPROVED VERSION)

๐Ÿ“Š Final Score: {score}% 
โœ… Correct Answers: {correct_count}/{total_attempted}

๐Ÿ”ง System Status:
{api_status}

๐Ÿš€ Key Improvements Made:
โ€ข Fixed overly broad reversed text detection
โ€ข Improved search result processing with structured data
โ€ข Better answer box and knowledge graph utilization
โ€ข Enhanced person/actor name extraction
โ€ข Improved numerical and date extraction
โ€ข More precise question classification
โ€ข Eliminated generic "right" fallback answers

๐Ÿ“ˆ Technical Fixes:
โ€ข Removed faulty 'fo' pattern that triggered false positives
โ€ข Added proper search result structure handling
โ€ข Implemented context-aware answer formatting
โ€ข Better handling of edge cases and errors
โ€ข Improved rate limiting and error recovery

๐Ÿ’ก Performance Notes:
This version should show significantly better accuracy by properly processing search results and avoiding the classification errors that caused nonsensical answers in the previous version."""

        return results_summary, pd.DataFrame(detailed_logs)
        
    except Exception as e:
        return f"โŒ Submission failed: {str(e)}\n\nAnswers were processed but could not be submitted.", pd.DataFrame(detailed_logs)

# Gradio Interface
with gr.Blocks(title="GAIA Improved Agent", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # ๐Ÿง  GAIA Benchmark Agent (IMPROVED VERSION)
    
    **๐Ÿ”ง Major Fixes Applied:**
    - โœ… Fixed overly broad reversed text detection that caused false positives
    - โœ… Improved search result processing to use structured data properly
    - โœ… Enhanced question classification to avoid nonsensical answers
    - โœ… Better extraction of names, numbers, dates, and locations
    - โœ… Proper handling of answer boxes and knowledge graphs
    
    **๐ŸŽฏ Specialized Question Handling:**
    - ๐Ÿ”„ Genuine reversed text questions (with precise detection)
    - ๐Ÿงฎ Computational questions with proper math operations
    - ๐ŸŽญ Person/actor questions with improved name extraction
    - ๐Ÿ“ Location questions with geographic context
    - ๐Ÿ”ข Numerical questions with context-aware number extraction
    - ๐Ÿ“… Date/time questions with proper temporal parsing
    
    **๐Ÿ”ง Setup Required:**
    - Set `SERPER_API_KEY` in your Hugging Face Space secrets
    - Get free 2500 searches/month at [serper.dev](https://serper.dev)
    """)
    
    gr.LoginButton()
    
    with gr.Row():
        with gr.Column(scale=1):
            status_display = gr.Textbox(
                label="๐Ÿ”ง API Status",
                value=get_api_status(),
                lines=3,
                interactive=False
            )
            
            evaluate_button = gr.Button(
                "๐Ÿš€ Run GAIA Evaluation (Improved)",
                variant="primary",
                size="lg"
            )
    
    with gr.Row():
        results_output = gr.Textbox(
            label="๐Ÿ“Š Evaluation Results",
            lines=20,
            interactive=False
        )
    
    with gr.Row():
        logs_table = gr.DataFrame(
            label="๐Ÿ“‹ Detailed Processing Logs",
            wrap=True
        )
    
    evaluate_button.click(
        fn=run_gaia_evaluation,
        outputs=[results_output, logs_table]
    )

if __name__ == "__main__":
    demo.launch(share=True, debug=True)