Spaces:
Runtime error
Runtime error
File size: 18,126 Bytes
574b6ca c913a81 d591a7a 086b425 c913a81 8c139ea c913a81 757ebd9 d66e9b7 c913a81 d591a7a c913a81 aa6f3a8 c913a81 aa6f3a8 c913a81 aa6f3a8 c913a81 aa6f3a8 c913a81 d66e9b7 c913a81 d66e9b7 c913a81 d591a7a c913a81 d66e9b7 c913a81 d66e9b7 c913a81 d66e9b7 c913a81 d591a7a c913a81 8c139ea c913a81 d591a7a c913a81 d66e9b7 c913a81 d591a7a c913a81 d66e9b7 c913a81 d66e9b7 c913a81 d66e9b7 c913a81 d66e9b7 c913a81 19b7914 c913a81 eccf8e4 c913a81 aa6f3a8 d66e9b7 aa6f3a8 c913a81 a39e119 c913a81 8c139ea c913a81 bbb34b9 c913a81 8c139ea c913a81 f96a820 8c139ea c913a81 d3c0517 c913a81 d66e9b7 d3c0517 c913a81 e80aab9 c913a81 aa6f3a8 c913a81 7963312 c913a81 7963312 d66e9b7 c913a81 9f29ca9 c913a81 aa6f3a8 d66e9b7 e80aab9 c913a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
import re
from typing import Dict, List, Any, Optional
import urllib.parse
from datetime import datetime
import math
# Transformers and torch imports
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class EnhancedGAIAAgent:
def __init__(self):
print("Initializing Enhanced GAIA Agent with Mistral-7B...")
# Initialize Mistral model
try:
print("Loading Mistral-7B-Instruct model...")
self.tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
self.model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.3",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None
)
# Create pipeline for easier use
self.pipe = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_new_tokens=512,
temperature=0.7,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
print("โ
Mistral model loaded successfully!")
except Exception as e:
print(f"โ Error loading Mistral model: {e}")
print("Falling back to basic responses...")
self.pipe = None
# Tool functions for GAIA tasks
self.tools = {
"calculate": self._calculate,
"search_web": self._search_web,
"parse_data": self._parse_data,
"analyze_text": self._analyze_text,
"solve_math": self._solve_math
}
def _calculate(self, expression: str) -> str:
"""Safe calculator for mathematical expressions"""
try:
# Clean and validate expression
expression = re.sub(r'[^0-9+\-*/().\s]', '', expression)
result = eval(expression)
return str(result)
except Exception as e:
return f"Calculation error: {e}"
def _search_web(self, query: str) -> str:
"""Simulate web search (placeholder - you'd integrate real search API)"""
# This is a placeholder - integrate with actual search API
return f"Search results for '{query}': [This would contain real search results]"
def _parse_data(self, data: str) -> str:
"""Parse and analyze structured data"""
try:
# Try to parse as JSON
if data.strip().startswith('{') or data.strip().startswith('['):
parsed = json.loads(data)
return f"Parsed data structure with {len(parsed) if isinstance(parsed, (list, dict)) else 1} elements"
else:
# Basic text analysis
lines = data.split('\n')
return f"Text data with {len(lines)} lines, {len(data.split())} words"
except Exception as e:
return f"Data parsing error: {e}"
def _analyze_text(self, text: str) -> str:
"""Analyze text content"""
words = text.split()
sentences = text.split('.')
return f"Text analysis: {len(words)} words, {len(sentences)} sentences"
def _solve_math(self, problem: str) -> str:
"""Enhanced math problem solver"""
try:
# Extract numbers and operations
numbers = re.findall(r'-?\d+\.?\d*', problem)
# Handle common math patterns
if "percent" in problem.lower() or "%" in problem:
if len(numbers) >= 2:
base = float(numbers[0])
percent = float(numbers[1])
result = base * (percent / 100)
return str(result)
if "average" in problem.lower() or "mean" in problem.lower():
if numbers:
nums = [float(n) for n in numbers]
return str(sum(nums) / len(nums))
# Default calculation
return self._calculate(" ".join(numbers))
except Exception as e:
return f"Math solving error: {e}"
def _generate_response(self, prompt: str) -> str:
"""Generate response using Mistral model"""
if not self.pipe:
return "Model not available - using fallback response."
try:
messages = [
{"role": "user", "content": prompt}
]
response = self.pipe(messages, max_new_tokens=512, temperature=0.7)
# Extract the generated text
if response and len(response) > 0:
generated_text = response[0]['generated_text']
# Get only the assistant's response (after the user message)
if isinstance(generated_text, list):
# Find the assistant's response
for msg in generated_text:
if msg.get('role') == 'assistant':
return msg.get('content', '')
elif isinstance(generated_text, str):
return generated_text
else:
return str(generated_text)
return "No response generated."
except Exception as e:
print(f"Error generating response: {e}")
return f"Error in response generation: {e}"
def _detect_task_type(self, question: str) -> str:
"""Detect the type of task to apply appropriate strategy"""
question_lower = question.lower()
if any(word in question_lower for word in ["calculate", "compute", "math", "+", "-", "*", "/", "="]):
return "calculation"
elif any(word in question_lower for word in ["search", "find", "lookup", "google"]):
return "search"
elif any(word in question_lower for word in ["data", "csv", "json", "table", "parse"]):
return "data_analysis"
elif any(word in question_lower for word in ["percent", "%", "average", "mean", "sum"]):
return "math_word_problem"
else:
return "general_reasoning"
def __call__(self, question: str) -> str:
print(f"Agent processing question (first 100 chars): {question[:100]}...")
# Detect task type
task_type = self._detect_task_type(question)
print(f"Detected task type: {task_type}")
# Build enhanced prompt based on task type
if task_type == "calculation":
enhanced_prompt = f"""
You are a precise mathematical assistant. Solve this step-by-step:
Question: {question}
Provide a clear, accurate answer. If calculation is needed, show your work.
Answer:"""
elif task_type == "math_word_problem":
enhanced_prompt = f"""
You are solving a math word problem. Break it down step by step:
Question: {question}
Steps:
1. Identify what is being asked
2. Extract the relevant numbers
3. Determine the operation needed
4. Calculate the result
5. Provide the final answer
Answer:"""
elif task_type == "data_analysis":
enhanced_prompt = f"""
You are analyzing data. Approach this systematically:
Question: {question}
Consider:
- What type of data is involved?
- What analysis is needed?
- What tools or methods should be used?
Provide a clear, structured answer.
Answer:"""
else:
enhanced_prompt = f"""
You are a helpful assistant that provides accurate, well-reasoned answers.
Question: {question}
Think through this step-by-step and provide a clear, comprehensive answer.
Answer:"""
# Generate response using the model
try:
response = self._generate_response(enhanced_prompt)
# Post-process response for specific task types
if task_type in ["calculation", "math_word_problem"]:
# Try to extract and verify any calculations
numbers_in_response = re.findall(r'-?\d+\.?\d*', response)
if numbers_in_response:
# Attempt to verify calculation if simple enough
pass
print(f"Agent returning response (first 100 chars): {response[:100]}...")
return response.strip()
except Exception as e:
print(f"Error in agent processing: {e}")
fallback_response = self._handle_fallback(question, task_type)
return fallback_response
def _handle_fallback(self, question: str, task_type: str) -> str:
"""Provide fallback responses when the main model fails"""
if task_type == "calculation":
# Try to extract and calculate simple expressions
try:
numbers = re.findall(r'-?\d+\.?\d*', question)
if len(numbers) >= 2:
if "+" in question:
result = sum(float(n) for n in numbers)
return f"The sum is {result}"
elif "*" in question or "multiply" in question.lower():
result = 1
for n in numbers:
result *= float(n)
return f"The product is {result}"
except:
pass
return f"I understand you're asking about: {question}. This appears to be a {task_type} task. Let me provide my best analysis based on the available information."
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the EnhancedGAIAAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Enhanced Agent
try:
print("Initializing Enhanced GAIA Agent...")
agent = EnhancedGAIAAgent()
print("โ
Agent initialized successfully!")
except Exception as e:
print(f"โ Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"โ
Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"โ Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"โ Error decoding JSON response from questions endpoint: {e}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"โ An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run Enhanced Agent
results_log = []
answers_payload = []
print(f"๐ Running enhanced agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data, 1):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"โ ๏ธ Skipping item with missing task_id or question: {item}")
continue
print(f"๐ Processing question {i}/{len(questions_data)} (ID: {task_id})")
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:200] + "..." if len(question_text) > 200 else question_text,
"Submitted Answer": submitted_answer[:300] + "..." if len(submitted_answer) > 300 else submitted_answer
})
print(f"โ
Completed question {i}")
except Exception as e:
print(f"โ Error running agent on task {task_id}: {e}")
error_response = f"AGENT ERROR: {e}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_response})
results_log.append({
"Task ID": task_id,
"Question": question_text[:200] + "..." if len(question_text) > 200 else question_text,
"Submitted Answer": error_response
})
if not answers_payload:
print("โ Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"๐ค Submitting {len(answers_payload)} answers for user '{username}'...")
# 5. Submit
try:
response = requests.post(submit_url, json=submission_data, timeout=120) # Increased timeout
response.raise_for_status()
result_data = response.json()
final_status = (
f"๐ Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("โ
Submission successful!")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"โ Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"โ An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks(title="Enhanced GAIA Agent") as demo:
gr.Markdown("# ๐ Enhanced GAIA Agent with Mistral-7B")
gr.Markdown(
"""
**Enhanced Features:**
- ๐ง **Mistral-7B-Instruct** for advanced reasoning
- ๐ง **Tool Integration** for calculations and data processing
- ๐ **Task Type Detection** for optimized responses
- ๐ฏ **GAIA-Optimized** prompting strategies
**Instructions:**
1. Clone this space and ensure you have access to Mistral-7B-Instruct
2. Log in to your Hugging Face account using the button below
3. Click 'Run Enhanced Evaluation' to process all questions with the enhanced agent
**Note:** The enhanced agent uses Mistral-7B which requires significant computational resources.
Processing may take several minutes depending on the number of questions.
"""
)
with gr.Row():
gr.LoginButton()
with gr.Row():
run_button = gr.Button("๐ Run Enhanced Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(
label="๐ Run Status / Submission Result",
lines=8,
interactive=False
)
results_table = gr.DataFrame(
label="๐ Questions and Agent Answers",
wrap=True,
height=400
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "="*50)
print("๐ ENHANCED GAIA AGENT STARTING")
print("="*50)
# Environment check
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"โ
SPACE_HOST: {space_host}")
print(f"๐ Runtime URL: https://{space_host}.hf.space")
else:
print("โน๏ธ Running locally - SPACE_HOST not found")
if space_id:
print(f"โ
SPACE_ID: {space_id}")
print(f"๐ Repo URL: https://huggingface.co/spaces/{space_id}")
else:
print("โน๏ธ SPACE_ID not found")
# GPU/CPU check
if torch.cuda.is_available():
print(f"๐ฎ GPU Available: {torch.cuda.get_device_name()}")
print(f"๐พ GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
else:
print("๐ป Running on CPU (GPU not available)")
print("="*50)
print("๐ Launching Enhanced GAIA Agent Interface...")
demo.launch(debug=True, share=False) |