File size: 9,447 Bytes
757ebd9
ca2b63a
 
 
 
574b6ca
 
 
 
10e9b7d
757ebd9
 
 
 
e80aab9
3db6293
e80aab9
ca2b63a
 
31243f4
ca2b63a
757ebd9
ca2b63a
 
 
 
 
 
 
 
 
757ebd9
 
ca2b63a
 
 
 
757ebd9
ca2b63a
 
 
 
757ebd9
ca2b63a
 
757ebd9
 
ca2b63a
 
 
 
 
 
 
 
757ebd9
ca2b63a
757ebd9
 
 
 
 
 
 
 
 
 
ca2b63a
 
757ebd9
ca2b63a
 
757ebd9
ca2b63a
757ebd9
 
 
 
ca2b63a
31243f4
ca2b63a
 
 
 
 
 
 
4021bf3
757ebd9
 
ca2b63a
31243f4
ca2b63a
31243f4
 
757ebd9
3c4371f
7e4a06b
757ebd9
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
757ebd9
31243f4
757ebd9
31243f4
3c4371f
31243f4
757ebd9
36ed51a
c1fd3d2
3c4371f
757ebd9
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
757ebd9
 
31243f4
e80aab9
31243f4
 
3c4371f
757ebd9
 
 
7d65c66
31243f4
 
e80aab9
757ebd9
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
757ebd9
 
31243f4
 
3c4371f
31243f4
 
757ebd9
7d65c66
3c4371f
31243f4
e80aab9
757ebd9
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
757ebd9
 
e80aab9
ca2b63a
0ee0419
e514fd7
 
ca2b63a
 
 
e514fd7
e80aab9
 
7e4a06b
31243f4
9088b99
7d65c66
e80aab9
31243f4
 
 
e80aab9
 
757ebd9
e80aab9
3c4371f
 
ca2b63a
7d65c66
3c4371f
 
7d65c66
 
757ebd9
7d65c66
00010f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# app.py
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
from transformers import AutoTokenizer
import os
import gradio as gr
import requests
import pandas as pd

from duckduckgo_search import DDGS
from sympy import sympify
from sympy.core.sympify import SympifyError

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Advanced Agent Definition ---
class SmartAgent:
    def __init__(self):
        print("Initializing Local LLM Agent...")

        # Initialize Zephyr-7B model
        self.llm = HuggingFaceLLM(
            model_name="HuggingFaceH4/zephyr-7b-beta",
            tokenizer_name="HuggingFaceH4/zephyr-7b-beta",
            context_window=2048,
            max_new_tokens=256,
            generate_kwargs={"temperature": 0.7, "do_sample": True},
            device_map="auto"
        )

        # Define tools with real implementations
        self.tools = [
            FunctionTool.from_defaults(
                fn=self.web_search,
                name="web_search",
                description="Searches the web for current information using DuckDuckGo."
            ),
            FunctionTool.from_defaults(
                fn=self.math_calculator,
                name="math_calculator",
                description="Performs symbolic math using SymPy."
            )
        ]

        # Create ReAct agent with tools
        self.agent = ReActAgent.from_tools(
            tools=self.tools,
            llm=self.llm,
            verbose=True
        )
        print("Local LLM Agent initialized successfully.")

    def web_search(self, query: str) -> str:
        """Real web search using DuckDuckGo"""
        print(f"Web search triggered for: {query[:50]}...")
        try:
            with DDGS() as ddgs:
                results = ddgs.text(query, max_results=3)
                if results:
                    return "\n\n".join([f"{r['title']}: {r['href']}" for r in results])
                else:
                    return "No results found."
        except Exception as e:
            print(f"Web search error: {e}")
            return f"Error during web search: {e}"

    def math_calculator(self, expression: str) -> str:
        """Safe math evaluation using SymPy"""
        print(f"Math calculation triggered for: {expression}")
        try:
            result = sympify(expression).evalf()
            return str(result)
        except SympifyError as e:
            return f"Error: Could not parse the expression ({e})"
        except Exception as e:
            return f"Error: Calculation failed ({e})"

    def __call__(self, question: str) -> str:
        print(f"Processing question (first 50 chars): {question[:50]}...")
        try:
            response = self.agent.query(question)
            return str(response)
        except Exception as e:
            print(f"Agent error: {str(e)}")
            return f"Error processing question: {str(e)}"


# --- Original Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the agent on them, submits all answers,
    and displays the results.
    """
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Instantiate Agent
    try:
        agent = SmartAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # Run Agent on all questions
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Prepare submission
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Local LLM Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Log in to your Hugging Face account
        2. Click 'Run Evaluation & Submit All Answers'
        3. Wait for the local LLM to process all questions
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )


if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"✅ SPACE_ID found: {space_id_startup}")
    else:
        print("❌ SPACE_HOST not found. Please set environment variables.")

    demo.launch()