Spaces:
Runtime error
Runtime error
File size: 10,112 Bytes
574b6ca d591a7a 086b425 d591a7a 57b9551 9f29ca9 aa6f3a8 f0b3f91 8c139ea aa6f3a8 9f29ca9 aa6f3a8 757ebd9 d66e9b7 57b9551 aa6f3a8 e80aab9 aa6f3a8 f0b3f91 9f29ca9 d591a7a f0b3f91 cccb073 d66e9b7 8c139ea d66e9b7 d3c0517 d66e9b7 d591a7a 25405da 8c139ea 9f29ca9 d66e9b7 d591a7a aa6f3a8 d591a7a aa6f3a8 57b9551 aa6f3a8 d66e9b7 d591a7a d66e9b7 57b9551 d66e9b7 d591a7a aa6f3a8 d66e9b7 aa6f3a8 d66e9b7 aa6f3a8 d66e9b7 aa6f3a8 d66e9b7 57b9551 d591a7a d66e9b7 d591a7a aa6f3a8 d66e9b7 bbb34b9 d591a7a aa6f3a8 57b9551 aa6f3a8 d66e9b7 57b9551 aa6f3a8 d66e9b7 aa6f3a8 d66e9b7 aa6f3a8 d591a7a cccb073 d66e9b7 0f20e93 8c139ea cccb073 d66e9b7 d3c0517 d66e9b7 cccb073 d3c0517 57b9551 c66203c d66e9b7 57b9551 8c139ea 57b9551 cccb073 d66e9b7 8c139ea 57b9551 8c139ea aa6f3a8 d591a7a d66e9b7 aa6f3a8 d591a7a d66e9b7 d591a7a d66e9b7 aa6f3a8 19b7914 d66e9b7 aa6f3a8 d66e9b7 03ca047 aa6f3a8 cccb073 d66e9b7 d3c0517 d66e9b7 19b7914 eccf8e4 aa6f3a8 d66e9b7 aa6f3a8 a39e119 d66e9b7 d3c0517 8c139ea d66e9b7 bbb34b9 d66e9b7 8c139ea d66e9b7 f96a820 8c139ea d66e9b7 d3c0517 d66e9b7 d3c0517 d66e9b7 d3c0517 e80aab9 aa6f3a8 d3c0517 aa6f3a8 7963312 aa6f3a8 7963312 d66e9b7 aa6f3a8 8c139ea d66e9b7 8c139ea aa6f3a8 d66e9b7 9f29ca9 d66e9b7 aa6f3a8 d66e9b7 e80aab9 aa6f3a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import gradio as gr
import requests
import json
import re
import numexpr
import pandas as pd
from pdfminer.high_level import extract_text
from bs4 import BeautifulSoup
from typing import List, Dict, Optional, Tuple
from dotenv import load_dotenv
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
import gc
# --- Configuration ---
load_dotenv()
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Constants ---
MAX_STEPS = 6
MAX_TOKENS = 256
TIMEOUT_PER_QUESTION = 45
MAX_RESULT_LENGTH = 500
MAX_ATTEMPTS = 2
# --- Model Initialization ---
print("Initializing model with fixed cache configuration...")
start_time = time.time()
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="auto",
low_cpu_mem_usage=True
)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
use_fast=True,
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print(f"Model loaded in {time.time() - start_time:.2f} seconds")
# --- Tool Implementations ---
def web_search(query: str) -> str:
try:
if not SERPER_API_KEY:
return "Search API key not configured"
params = {'q': query, 'num': 3}
headers = {'X-API-KEY': SERPER_API_KEY}
response = requests.post(
'https://google.serper.dev/search',
headers=headers,
json=params,
timeout=10
)
response.raise_for_status()
results = response.json()
if 'organic' not in results or not results['organic']:
return "No relevant results found"
output = []
for r in results['organic'][:3]:
if 'title' in r and 'snippet' in r:
output.append(f"Title: {r['title']}\nSnippet: {r['snippet']}")
return "\n\n".join(output)[:MAX_RESULT_LENGTH]
except Exception as e:
return f"Search error: {str(e)}"
def calculator(expression: str) -> str:
try:
expression = re.sub(r'[^\d+\-*/().^%,\s]', '', expression)
if not expression:
return "Invalid empty expression"
return str(numexpr.evaluate(expression))
except Exception as e:
return f"Calculation error: {str(e)}"
def read_webpage(url: str) -> str:
try:
if not re.match(r'^https?://', url):
return "Invalid URL format"
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get(url, timeout=15, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
for element in soup(['script', 'style', 'nav', 'footer', 'aside']):
element.decompose()
main_content = soup.find('main') or soup.find('article') or soup
text = main_content.get_text(separator='\n', strip=True)
text = re.sub(r'\n{3,}', '\n\n', text)
return text[:MAX_RESULT_LENGTH]
except Exception as e:
return f"Webpage error: {str(e)}"
TOOLS = {
"web_search": web_search,
"calculator": calculator,
"read_webpage": read_webpage
}
# --- GAIA Agent Class ---
class GAIA_Agent:
def __init__(self):
self.tools = TOOLS
self.system_prompt = """You are an advanced problem solver. Follow these steps:
1. Analyze the question
2. Select the best tool
3. Execute with proper arguments
4. Interpret results
5. Provide final answer
Tools:
- web_search(query): For general knowledge
- calculator(expression): For math
- read_webpage(url): For web content
Tool format: ```json
{"tool": "tool_name", "args": {"arg": value}}```
Always conclude with: Final Answer: [answer]"""
def __call__(self, question: str) -> str:
start_time = time.time()
history = [f"Question: {question}"]
try:
for step in range(MAX_STEPS):
if time.time() - start_time > TIMEOUT_PER_QUESTION:
return "Timeout: Processing took too long"
prompt = self._build_prompt(history)
response = self._call_model(prompt)
if "Final Answer:" in response:
return response.split("Final Answer:")[-1].strip()[:500]
tool_call = self._parse_tool_call(response)
if tool_call:
tool_name, args = tool_call
observation = self._use_tool(tool_name, args)
history.append(f"Tool: {tool_name}")
history.append(f"Result: {observation[:300]}...")
else:
history.append(f"Thought: {response}")
gc.collect()
return "Maximum steps reached"
except Exception as e:
return f"Agent error: {str(e)}"
def _build_prompt(self, history: List[str]) -> str:
return f"<|system|>\n{self.system_prompt}<|end|>\n<|user|>\n" + "\n".join(history) + "<|end|>\n<|assistant|>"
def _call_model(self, prompt: str) -> str:
for attempt in range(MAX_ATTEMPTS):
try:
inputs = tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=3072,
padding=False
)
outputs = model.generate(
inputs.input_ids,
max_new_tokens=MAX_TOKENS,
temperature=0.3,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
attention_mask=inputs.attention_mask
)
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("<|assistant|>")[-1].strip()
except Exception as e:
if attempt < MAX_ATTEMPTS - 1:
time.sleep(0.5)
continue
return f"Model error: {str(e)}"
def _parse_tool_call(self, text: str) -> Optional[Tuple[str, Dict]]:
try:
json_match = re.search(r'```json\s*({.+?})\s*```', text, re.DOTALL)
if not json_match:
return None
tool_call = json.loads(json_match.group(1))
if not isinstance(tool_call, dict):
return None
if "tool" not in tool_call or "args" not in tool_call:
return None
if not isinstance(tool_call["args"], dict):
return None
return tool_call["tool"], tool_call["args"]
except:
return None
def _use_tool(self, tool_name: str, args: Dict) -> str:
if tool_name not in self.tools:
return f"Unknown tool: {tool_name}"
try:
if tool_name == "read_webpage" and "url" not in args:
url_match = re.search(r'https?://[^\s]+', str(args))
if url_match:
args = {"url": url_match.group()}
else:
return "Missing URL argument"
return str(self.tools[tool_name](**args))[:MAX_RESULT_LENGTH]
except Exception as e:
return f"Tool error: {str(e)}"
# --- Evaluation Function ---
def run_evaluation(profile: gr.OAuthProfile | None):
if not profile:
return "Please login first", None
agent = GAIA_Agent()
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "No questions available", None
except Exception as e:
return f"Failed to get questions: {str(e)}", None
results = []
answers = []
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question = item.get("question")
if not task_id or not question:
continue
print(f"Processing question {i+1}/{len(questions_data)}")
answer = agent(question)
answers.append({"task_id": task_id, "submitted_answer": answer})
results.append({
"Task ID": task_id,
"Question": question[:100] + "..." if len(question) > 100 else question,
"Answer": answer[:100] + "..." if len(answer) > 100 else answer
})
submission = {
"username": profile.username,
"agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}",
"answers": answers
}
try:
response = requests.post(submit_url, json=submission, timeout=60)
response.raise_for_status()
result = response.json()
status = (f"✅ Submission Successful!\n"
f"Score: {result.get('score', 'N/A')}%\n"
f"Correct: {result.get('correct_count', '?')}/{result.get('total_attempted', '?')}")
return status, pd.DataFrame(results)
except Exception as e:
return f"❌ Submission failed: {str(e)}", pd.DataFrame(results)
# --- Gradio Interface ---
with gr.Blocks(title="Fixed GAIA Agent", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🚀 GAIA Agent Evaluation")
with gr.Row():
gr.LoginButton()
run_btn = gr.Button("Run Evaluation", variant="primary")
status_output = gr.Textbox(label="Status")
results_table = gr.DataFrame(label="Results")
run_btn.click(
run_evaluation,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860
) |