File size: 10,112 Bytes
574b6ca
 
 
d591a7a
086b425
d591a7a
 
 
 
57b9551
9f29ca9
aa6f3a8
f0b3f91
 
8c139ea
 
aa6f3a8
9f29ca9
 
aa6f3a8
 
757ebd9
d66e9b7
57b9551
 
 
 
aa6f3a8
e80aab9
aa6f3a8
 
f0b3f91
9f29ca9
d591a7a
 
f0b3f91
cccb073
d66e9b7
 
8c139ea
 
 
d66e9b7
d3c0517
d66e9b7
d591a7a
25405da
8c139ea
 
9f29ca9
d66e9b7
d591a7a
aa6f3a8
d591a7a
 
aa6f3a8
57b9551
aa6f3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d66e9b7
 
d591a7a
 
 
d66e9b7
 
 
57b9551
d66e9b7
 
d591a7a
 
 
aa6f3a8
 
 
d66e9b7
aa6f3a8
 
d66e9b7
aa6f3a8
 
d66e9b7
 
aa6f3a8
 
 
 
d66e9b7
57b9551
d591a7a
 
 
d66e9b7
d591a7a
 
 
aa6f3a8
d66e9b7
bbb34b9
d591a7a
aa6f3a8
57b9551
aa6f3a8
 
 
 
d66e9b7
57b9551
aa6f3a8
 
 
d66e9b7
 
aa6f3a8
d66e9b7
aa6f3a8
d591a7a
 
cccb073
d66e9b7
0f20e93
8c139ea
 
cccb073
d66e9b7
d3c0517
d66e9b7
 
cccb073
d3c0517
57b9551
c66203c
d66e9b7
 
 
 
57b9551
 
8c139ea
57b9551
cccb073
d66e9b7
8c139ea
57b9551
8c139ea
aa6f3a8
d591a7a
d66e9b7
 
 
 
aa6f3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d591a7a
d66e9b7
d591a7a
d66e9b7
aa6f3a8
 
 
 
 
 
 
 
 
 
 
 
19b7914
d66e9b7
 
 
 
 
 
 
 
aa6f3a8
 
 
 
 
d66e9b7
 
 
 
03ca047
aa6f3a8
 
cccb073
d66e9b7
d3c0517
d66e9b7
 
 
19b7914
eccf8e4
aa6f3a8
 
d66e9b7
aa6f3a8
 
a39e119
d66e9b7
 
d3c0517
 
8c139ea
d66e9b7
bbb34b9
d66e9b7
8c139ea
d66e9b7
f96a820
8c139ea
d66e9b7
 
d3c0517
d66e9b7
 
 
 
 
 
d3c0517
d66e9b7
 
 
 
 
d3c0517
e80aab9
aa6f3a8
 
d3c0517
aa6f3a8
 
 
 
7963312
aa6f3a8
7963312
d66e9b7
aa6f3a8
 
8c139ea
d66e9b7
 
 
8c139ea
aa6f3a8
d66e9b7
9f29ca9
d66e9b7
aa6f3a8
 
d66e9b7
e80aab9
 
aa6f3a8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import gradio as gr
import requests
import json
import re
import numexpr
import pandas as pd
from pdfminer.high_level import extract_text
from bs4 import BeautifulSoup
from typing import List, Dict, Optional, Tuple
from dotenv import load_dotenv
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
import gc

# --- Configuration ---
load_dotenv()
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Constants ---
MAX_STEPS = 6
MAX_TOKENS = 256
TIMEOUT_PER_QUESTION = 45
MAX_RESULT_LENGTH = 500
MAX_ATTEMPTS = 2

# --- Model Initialization ---
print("Initializing model with fixed cache configuration...")
start_time = time.time()

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    trust_remote_code=True,
    torch_dtype=torch.float32,
    device_map="auto",
    low_cpu_mem_usage=True
)

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME,
    use_fast=True,
    trust_remote_code=True
)

if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

print(f"Model loaded in {time.time() - start_time:.2f} seconds")

# --- Tool Implementations ---
def web_search(query: str) -> str:
    try:
        if not SERPER_API_KEY:
            return "Search API key not configured"
            
        params = {'q': query, 'num': 3}
        headers = {'X-API-KEY': SERPER_API_KEY}
        response = requests.post(
            'https://google.serper.dev/search',
            headers=headers,
            json=params,
            timeout=10
        )
        response.raise_for_status()
        results = response.json()
        
        if 'organic' not in results or not results['organic']:
            return "No relevant results found"
            
        output = []
        for r in results['organic'][:3]:
            if 'title' in r and 'snippet' in r:
                output.append(f"Title: {r['title']}\nSnippet: {r['snippet']}")
        return "\n\n".join(output)[:MAX_RESULT_LENGTH]
    except Exception as e:
        return f"Search error: {str(e)}"

def calculator(expression: str) -> str:
    try:
        expression = re.sub(r'[^\d+\-*/().^%,\s]', '', expression)
        if not expression:
            return "Invalid empty expression"
        return str(numexpr.evaluate(expression))
    except Exception as e:
        return f"Calculation error: {str(e)}"

def read_webpage(url: str) -> str:
    try:
        if not re.match(r'^https?://', url):
            return "Invalid URL format"
            
        headers = {'User-Agent': 'Mozilla/5.0'}
        response = requests.get(url, timeout=15, headers=headers)
        response.raise_for_status()
        
        soup = BeautifulSoup(response.text, 'html.parser')
        for element in soup(['script', 'style', 'nav', 'footer', 'aside']):
            element.decompose()
            
        main_content = soup.find('main') or soup.find('article') or soup
        text = main_content.get_text(separator='\n', strip=True)
        text = re.sub(r'\n{3,}', '\n\n', text)
        return text[:MAX_RESULT_LENGTH]
    except Exception as e:
        return f"Webpage error: {str(e)}"

TOOLS = {
    "web_search": web_search,
    "calculator": calculator,
    "read_webpage": read_webpage
}

# --- GAIA Agent Class ---
class GAIA_Agent:
    def __init__(self):
        self.tools = TOOLS
        self.system_prompt = """You are an advanced problem solver. Follow these steps:
1. Analyze the question
2. Select the best tool
3. Execute with proper arguments
4. Interpret results
5. Provide final answer

Tools:
- web_search(query): For general knowledge
- calculator(expression): For math
- read_webpage(url): For web content

Tool format: ```json
{"tool": "tool_name", "args": {"arg": value}}```

Always conclude with: Final Answer: [answer]"""

    def __call__(self, question: str) -> str:
        start_time = time.time()
        history = [f"Question: {question}"]
        
        try:
            for step in range(MAX_STEPS):
                if time.time() - start_time > TIMEOUT_PER_QUESTION:
                    return "Timeout: Processing took too long"
                
                prompt = self._build_prompt(history)
                response = self._call_model(prompt)
                
                if "Final Answer:" in response:
                    return response.split("Final Answer:")[-1].strip()[:500]
                
                tool_call = self._parse_tool_call(response)
                if tool_call:
                    tool_name, args = tool_call
                    observation = self._use_tool(tool_name, args)
                    history.append(f"Tool: {tool_name}")
                    history.append(f"Result: {observation[:300]}...")
                else:
                    history.append(f"Thought: {response}")
                
                gc.collect()
            
            return "Maximum steps reached"
        except Exception as e:
            return f"Agent error: {str(e)}"

    def _build_prompt(self, history: List[str]) -> str:
        return f"<|system|>\n{self.system_prompt}<|end|>\n<|user|>\n" + "\n".join(history) + "<|end|>\n<|assistant|>"

    def _call_model(self, prompt: str) -> str:
        for attempt in range(MAX_ATTEMPTS):
            try:
                inputs = tokenizer(
                    prompt,
                    return_tensors="pt",
                    truncation=True,
                    max_length=3072,
                    padding=False
                )
                
                outputs = model.generate(
                    inputs.input_ids,
                    max_new_tokens=MAX_TOKENS,
                    temperature=0.3,
                    top_p=0.9,
                    do_sample=True,
                    pad_token_id=tokenizer.pad_token_id,
                    attention_mask=inputs.attention_mask
                )
                
                return tokenizer.decode(outputs[0], skip_special_tokens=True).split("<|assistant|>")[-1].strip()
            except Exception as e:
                if attempt < MAX_ATTEMPTS - 1:
                    time.sleep(0.5)
                    continue
                return f"Model error: {str(e)}"

    def _parse_tool_call(self, text: str) -> Optional[Tuple[str, Dict]]:
        try:
            json_match = re.search(r'```json\s*({.+?})\s*```', text, re.DOTALL)
            if not json_match:
                return None
                
            tool_call = json.loads(json_match.group(1))
            if not isinstance(tool_call, dict):
                return None
            if "tool" not in tool_call or "args" not in tool_call:
                return None
            if not isinstance(tool_call["args"], dict):
                return None
                
            return tool_call["tool"], tool_call["args"]
        except:
            return None

    def _use_tool(self, tool_name: str, args: Dict) -> str:
        if tool_name not in self.tools:
            return f"Unknown tool: {tool_name}"
        
        try:
            if tool_name == "read_webpage" and "url" not in args:
                url_match = re.search(r'https?://[^\s]+', str(args))
                if url_match:
                    args = {"url": url_match.group()}
                else:
                    return "Missing URL argument"
            
            return str(self.tools[tool_name](**args))[:MAX_RESULT_LENGTH]
        except Exception as e:
            return f"Tool error: {str(e)}"

# --- Evaluation Function ---
def run_evaluation(profile: gr.OAuthProfile | None):
    if not profile:
        return "Please login first", None
    
    agent = GAIA_Agent()
    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"
    
    try:
        response = requests.get(questions_url, timeout=20)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "No questions available", None
    except Exception as e:
        return f"Failed to get questions: {str(e)}", None
    
    results = []
    answers = []
    
    for i, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question = item.get("question")
        
        if not task_id or not question:
            continue
            
        print(f"Processing question {i+1}/{len(questions_data)}")
        answer = agent(question)
        
        answers.append({"task_id": task_id, "submitted_answer": answer})
        results.append({
            "Task ID": task_id,
            "Question": question[:100] + "..." if len(question) > 100 else question,
            "Answer": answer[:100] + "..." if len(answer) > 100 else answer
        })
    
    submission = {
        "username": profile.username,
        "agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}",
        "answers": answers
    }
    
    try:
        response = requests.post(submit_url, json=submission, timeout=60)
        response.raise_for_status()
        result = response.json()
        status = (f"✅ Submission Successful!\n"
                 f"Score: {result.get('score', 'N/A')}%\n"
                 f"Correct: {result.get('correct_count', '?')}/{result.get('total_attempted', '?')}")
        return status, pd.DataFrame(results)
    except Exception as e:
        return f"❌ Submission failed: {str(e)}", pd.DataFrame(results)

# --- Gradio Interface ---
with gr.Blocks(title="Fixed GAIA Agent", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# 🚀 GAIA Agent Evaluation")
    
    with gr.Row():
        gr.LoginButton()
        run_btn = gr.Button("Run Evaluation", variant="primary")
    
    status_output = gr.Textbox(label="Status")
    results_table = gr.DataFrame(label="Results")
    
    run_btn.click(
        run_evaluation,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860
    )