Spaces:
Runtime error
Runtime error
File size: 13,514 Bytes
574b6ca d591a7a 086b425 d591a7a bbb34b9 9f29ca9 0f20e93 d591a7a 9f29ca9 d591a7a 9f29ca9 757ebd9 d591a7a 3db6293 9f29ca9 e80aab9 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a bbb34b9 d591a7a 0f20e93 d591a7a 0f20e93 d591a7a c66203c d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a e2bf8cd d591a7a a8701c2 d591a7a 529a4e1 d591a7a 03ca047 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a c66203c d591a7a c66203c d591a7a f96a820 9f29ca9 31243f4 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a eccf8e4 d591a7a c66203c d591a7a 9f29ca9 d591a7a a39e119 d591a7a 9f29ca9 d591a7a bbb34b9 d591a7a f96a820 086b425 d591a7a 03ca047 9f29ca9 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a e80aab9 d591a7a 7963312 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a 9f29ca9 d591a7a 7963312 9f29ca9 d591a7a 9f29ca9 d591a7a bbb34b9 e80aab9 d591a7a 9f29ca9 d591a7a 9f29ca9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import os
import gradio as gr
import requests
import json
import re
import numexpr
import pandas as pd
import time
import torch
import math
import pdfminer
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from duckduckgo_search import DDGS
from pdfminer.high_level import extract_text
from bs4 import BeautifulSoup
import html2text
from typing import Dict, Any, List, Tuple, Callable
from dotenv import load_dotenv
# --- Load Environment Variables ---
load_dotenv()
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_STEPS = 6
MAX_TOKENS = 256
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
# --- Configure Environment for Hugging Face Spaces ---
os.environ["PIP_BREAK_SYSTEM_PACKAGES"] = "1"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
# --- Load Quantized Model ---
print("Loading quantized model...")
start_time = time.time()
# Configure 4-bit quantization
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
quantization_config=quant_config,
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
load_time = time.time() - start_time
print(f"Model loaded in {load_time:.2f} seconds")
# --- Tools for GAIA Agent ---
def web_search(query: str) -> str:
"""Search the web using DuckDuckGo or Serper API"""
try:
if SERPER_API_KEY:
# Use Serper API if key is available
params = {
'q': query,
'num': 3,
'hl': 'en',
'gl': 'us'
}
headers = {
'X-API-KEY': SERPER_API_KEY,
'Content-Type': 'application/json'
}
response = requests.post(
'https://google.serper.dev/search',
headers=headers,
json=params
)
results = response.json()
if 'organic' in results:
return json.dumps([r['title'] + ": " + r['snippet'] for r in results['organic'][:3]])
return "No results found"
else:
# Fallback to DuckDuckGo
with DDGS() as ddgs:
results = [r for r in ddgs.text(query, max_results=3)]
return json.dumps([r['title'] + ": " + r['body'] for r in results])
except Exception as e:
return f"Search error: {str(e)}"
def calculator(expression: str) -> str:
"""Evaluate mathematical expressions safely"""
try:
return str(numexpr.evaluate(expression))
except Exception as e:
return f"Calculation error: {str(e)}"
def read_pdf(file_path: str) -> str:
"""Extract text from PDF files"""
try:
return extract_text(file_path)[:2000] # Limit to first 2000 characters
except Exception as e:
return f"PDF read error: {str(e)}"
def read_webpage(url: str) -> str:
"""Fetch and extract text from web pages"""
try:
response = requests.get(url, timeout=10)
soup = BeautifulSoup(response.text, 'html.parser')
return soup.get_text(separator=' ', strip=True)[:2000] # Limit text
except Exception as e:
return f"Webpage read error: {str(e)}"
TOOLS = {
"web_search": web_search,
"calculator": calculator,
"read_pdf": read_pdf,
"read_webpage": read_webpage
}
# --- GAIA Agent Implementation ---
class GAIA_Agent:
def __init__(self):
self.tools = TOOLS
self.history = []
self.system_prompt = (
"You are an expert GAIA problem solver. Use these tools: {web_search, calculator, read_pdf, read_webpage}.\n"
"Guidelines:\n"
"1. Think step-by-step. Explain reasoning\n"
"2. Use tools for calculations, searches, or file operations\n"
"3. Tools must be called as: ```json\n{'tool': 'tool_name', 'args': {'arg1': value}}```\n"
"4. Final Answer must be exact and standalone\n\n"
"Example:\n"
"Question: \"What's the population density of France? (File: france_data.pdf)\"\n"
"Thought: Need population and area. Read PDF first.\n"
"Action: ```json\n{'tool': 'read_pdf', 'args': {'file_path': 'france_data.pdf'}}```\n"
"Observation: Population: 67.8M, Area: 643,801 km²\n"
"Thought: Now calculate density: 67,800,000 / 643,801\n"
"Action: ```json\n{'tool': 'calculator', 'args': {'expression': '67800000 / 643801'}}```\n"
"Observation: 105.32\n"
"Final Answer: 105.32 people/km²"
)
def __call__(self, question: str) -> str:
print(f"\nProcessing: {question[:80]}...")
self.history = [f"Question: {question}"]
for step in range(MAX_STEPS):
prompt = self._build_prompt()
response = self._call_model(prompt)
if "Final Answer" in response:
answer = response.split("Final Answer:")[-1].strip()
print(f"Final Answer: {answer}")
return answer
tool_call = self._parse_tool_call(response)
if tool_call:
tool_name, args = tool_call
observation = self._use_tool(tool_name, args)
self.history.append(f"Observation: {observation}")
else:
self.history.append(f"Thought: {response}")
return "Agent couldn't find solution within step limit"
def _build_prompt(self) -> str:
prompt = "<|system|>\n" + self.system_prompt + "<|end|>\n"
prompt += "<|user|>\n" + "\n".join(self.history) + "<|end|>\n"
prompt += "<|assistant|>"
return prompt
def _call_model(self, prompt: str) -> str:
start_time = time.time()
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=True).to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=MAX_TOKENS,
temperature=0.01,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("<|assistant|>")[-1].strip()
gen_time = time.time() - start_time
print(f"Generated {len(response)} tokens in {gen_time:.2f}s: {response[:60]}...")
return response
def _parse_tool_call(self, text: str) -> Tuple[str, Dict] or None:
try:
json_match = re.search(r'```json\s*({.*?})\s*```', text, re.DOTALL)
if json_match:
tool_call = json.loads(json_match.group(1))
return tool_call["tool"], tool_call["args"]
except Exception as e:
print(f"Tool parse error: {str(e)}")
return None
def _use_tool(self, tool_name: str, args: Dict) -> str:
if tool_name not in self.tools:
return f"Error: Unknown tool {tool_name}"
print(f"Using tool: {tool_name}({args})")
try:
start_time = time.time()
result = self.tools[tool_name](**args)
exec_time = time.time() - start_time
print(f"Tool executed in {exec_time:.2f}s")
return str(result)[:500] # Truncate long outputs
except Exception as e:
return f"Tool error: {str(e)}"
# --- Evaluation Runner ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fetches questions, runs agent, submits answers, and displays results"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = GAIA_Agent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# Run Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account
2. Click 'Run Evaluation & Submit All Answers'
3. View results and score
**Agent Info:**
- Model: Phi-3-mini-4k-instruct (4-bit quantized)
- Tools: Web Search, Calculator, PDF Reader, Webpage Reader
- Max Steps: 6
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |