Spaces:
Runtime error
Runtime error
File size: 15,772 Bytes
574b6ca d591a7a 086b425 d591a7a 0f20e93 d591a7a 8c139ea 9f29ca9 8c139ea f0b3f91 8c139ea d3c0517 8c139ea 9f29ca9 757ebd9 34105a6 3db6293 34105a6 9f29ca9 34105a6 9f29ca9 d3c0517 9f29ca9 e80aab9 34105a6 f0b3f91 9f29ca9 d591a7a f0b3f91 cccb073 d3c0517 8c139ea d3c0517 34105a6 d591a7a 25405da 8c139ea 9f29ca9 d591a7a 34105a6 d591a7a 34105a6 d591a7a 9f29ca9 34105a6 cccb073 9f29ca9 8c139ea 34105a6 9f29ca9 d3c0517 34105a6 9f29ca9 34105a6 d591a7a 34105a6 d591a7a 34105a6 d3c0517 34105a6 cccb073 34105a6 d591a7a 34105a6 d591a7a 8c139ea 34105a6 d591a7a 34105a6 d591a7a 34105a6 d591a7a 34105a6 8c139ea 34105a6 d591a7a d3c0517 d591a7a 34105a6 bbb34b9 d591a7a 34105a6 d591a7a cccb073 34105a6 0f20e93 8c139ea 34105a6 cccb073 8c139ea 34105a6 cccb073 34105a6 d3c0517 34105a6 cccb073 34105a6 d3c0517 34105a6 c66203c 34105a6 d3c0517 34105a6 8c139ea 34105a6 cccb073 34105a6 8c139ea 34105a6 8c139ea 34105a6 d591a7a 34105a6 8c139ea 34105a6 d3c0517 34105a6 8c139ea d3c0517 8c139ea d3c0517 cccb073 8c139ea 34105a6 8c139ea cccb073 34105a6 cccb073 8c139ea 34105a6 8c139ea 34105a6 8c139ea d3c0517 8c139ea 34105a6 d591a7a 34105a6 d591a7a 34105a6 d3c0517 34105a6 d3c0517 34105a6 03ca047 34105a6 d591a7a cccb073 34105a6 c66203c cccb073 34105a6 d3c0517 34105a6 d591a7a d3c0517 34105a6 eccf8e4 34105a6 d3c0517 34105a6 a39e119 34105a6 d591a7a 34105a6 d3c0517 34105a6 8c139ea d3c0517 bbb34b9 d3c0517 8c139ea d3c0517 f96a820 8c139ea 34105a6 d3c0517 086b425 d3c0517 34105a6 d3c0517 34105a6 8c139ea 34105a6 03ca047 34105a6 d3c0517 34105a6 8c139ea d3c0517 34105a6 d3c0517 34105a6 d3c0517 cccb073 e80aab9 34105a6 d3c0517 34105a6 d3c0517 cccb073 34105a6 d3c0517 34105a6 d3c0517 34105a6 d591a7a cccb073 d3c0517 cccb073 7963312 34105a6 d3c0517 d591a7a 34105a6 7963312 34105a6 8c139ea 34105a6 8c139ea 34105a6 9f29ca9 34105a6 e80aab9 34105a6 9f29ca9 8c139ea 34105a6 8c139ea d3c0517 8c139ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import os
import gradio as gr
import requests
import json
import re
import numexpr
import pandas as pd
import math
import pdfminer
from duckduckgo_search import DDGS
from pdfminer.high_level import extract_text
from bs4 import BeautifulSoup
import html2text
from typing import Dict, Any, List, Tuple, Callable, Optional
from dotenv import load_dotenv
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
import time
import gc
import warnings
# Suppress warnings
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# --- Load Environment Variables ---
load_dotenv()
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
# --- Balanced Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_STEPS = 4 # Reasonable steps
MAX_TOKENS = 150 # Enough for reasoning
MODEL_NAME = "microsoft/Phi-3-mini-4k-instruct"
TIMEOUT_PER_QUESTION = 25 # 25 seconds - enough time
MAX_CONTEXT = 1500 # Reasonable context
# --- Configure Environment ---
os.environ["PIP_BREAK_SYSTEM_PACKAGES"] = "1"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
print("Loading model (BALANCED FAST mode)...")
start_time = time.time()
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
torch_dtype=torch.float32,
device_map="cpu",
low_cpu_mem_usage=True,
use_cache=False
)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
use_fast=True,
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
load_time = time.time() - start_time
print(f"Model loaded in {load_time:.2f} seconds")
# --- Reliable Tools ---
def web_search(query: str) -> str:
"""Fast but reliable web search"""
try:
if SERPER_API_KEY:
params = {'q': query[:150], 'num': 2}
headers = {'X-API-KEY': SERPER_API_KEY, 'Content-Type': 'application/json'}
response = requests.post(
'https://google.serper.dev/search',
headers=headers,
json=params,
timeout=8
)
results = response.json()
if 'organic' in results and results['organic']:
output = []
for r in results['organic'][:2]:
output.append(f"{r['title']}: {r['snippet']}")
return " | ".join(output)
return "No search results found"
else:
with DDGS() as ddgs:
results = []
for r in ddgs.text(query, max_results=2):
results.append(f"{r['title']}: {r['body'][:200]}")
return " | ".join(results) if results else "No search results"
except Exception as e:
return f"Search failed: {str(e)}"
def calculator(expression: str) -> str:
"""Reliable calculator"""
try:
# Clean the expression but keep more characters
clean_expr = re.sub(r'[^0-9+\-*/().\s]', '', str(expression))
if not clean_expr.strip():
return "Invalid mathematical expression"
# Use numexpr for safety
result = numexpr.evaluate(clean_expr)
return str(float(result))
except Exception as e:
return f"Calculation error: {str(e)}"
def read_pdf(file_path: str) -> str:
"""PDF reader with better error handling"""
try:
text = extract_text(file_path)
if text:
return text[:800] # More text for context
return "No text could be extracted from PDF"
except Exception as e:
return f"PDF reading error: {str(e)}"
def read_webpage(url: str) -> str:
"""Reliable webpage reader"""
try:
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
response = requests.get(url, timeout=8, headers=headers)
response.raise_for_status()
soup = BeautifulSoup(response.text, 'html.parser')
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text(separator=' ', strip=True)
return text[:800] if text else "No content found on webpage"
except Exception as e:
return f"Webpage error: {str(e)}"
TOOLS = {
"web_search": web_search,
"calculator": calculator,
"read_pdf": read_pdf,
"read_webpage": read_webpage
}
# --- Balanced GAIA Agent ---
class BalancedGAIA_Agent:
def __init__(self):
self.tools = TOOLS
self.system_prompt = (
"You are a GAIA problem solver. Available tools: web_search, calculator, read_pdf, read_webpage.\n"
"Think step by step and use tools when needed.\n\n"
"Tool usage format:\n"
"```json\n{\"tool\": \"tool_name\", \"args\": {\"parameter\": \"value\"}}\n```\n\n"
"Always end with: Final Answer: [your exact answer]\n\n"
"Example:\n"
"Question: What is 15 * 23?\n"
"I need to calculate 15 * 23.\n"
"```json\n{\"tool\": \"calculator\", \"args\": {\"expression\": \"15 * 23\"}}\n```\n"
"Final Answer: 345"
)
def __call__(self, question: str) -> str:
start_time = time.time()
print(f"π€ Solving: {question[:60]}...")
try:
conversation = [f"Question: {question}"]
for step in range(MAX_STEPS):
# Check timeout but be more generous
if time.time() - start_time > TIMEOUT_PER_QUESTION:
print(f"β° Timeout after {TIMEOUT_PER_QUESTION}s")
return "TIMEOUT: Question took too long to solve"
# Generate response
response = self._generate_response(conversation)
print(f"Step {step+1}: {response[:80]}...")
# Check for final answer
if "Final Answer:" in response:
answer = self._extract_final_answer(response)
elapsed = time.time() - start_time
print(f"β
Solved in {elapsed:.1f}s: {answer[:50]}...")
return answer
# Try to use tools
tool_result = self._execute_tools(response)
if tool_result:
conversation.append(f"Tool used: {tool_result}")
print(f"π§ Tool result: {tool_result[:60]}...")
else:
conversation.append(f"Reasoning: {response}")
# Keep conversation manageable
if len(" ".join(conversation)) > 1200:
conversation = conversation[-3:] # Keep last 3 entries
print("β No solution found within step limit")
return "Could not solve within step limit"
except Exception as e:
print(f"π₯ Agent error: {str(e)}")
return f"Agent error: {str(e)}"
def _generate_response(self, conversation: List[str]) -> str:
try:
# Build prompt
prompt = f"<|system|>\n{self.system_prompt}<|end|>\n"
prompt += f"<|user|>\n{chr(10).join(conversation)}<|end|>\n"
prompt += "<|assistant|>"
# Tokenize
inputs = tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=MAX_CONTEXT,
padding=False
)
# Generate
generation_config = GenerationConfig(
max_new_tokens=MAX_TOKENS,
temperature=0.2, # Lower temperature for more focused responses
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=False
)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
generation_config=generation_config,
attention_mask=inputs.attention_mask
)
# Decode
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = full_response.split("<|assistant|>")[-1].strip()
# Cleanup
del inputs, outputs
gc.collect()
return response
except Exception as e:
return f"Generation error: {str(e)}"
def _extract_final_answer(self, text: str) -> str:
"""Extract the final answer more reliably"""
try:
if "Final Answer:" in text:
answer_part = text.split("Final Answer:")[-1].strip()
# Take first line of the answer
answer = answer_part.split('\n')[0].strip()
return answer if answer else "No answer provided"
return "No final answer found"
except:
return "Answer extraction failed"
def _execute_tools(self, text: str) -> str:
"""Execute tools found in the response"""
try:
# Look for JSON tool calls
json_pattern = r'```json\s*(\{[^}]*\})\s*```'
matches = re.findall(json_pattern, text, re.DOTALL)
for match in matches:
try:
tool_call = json.loads(match)
tool_name = tool_call.get("tool")
args = tool_call.get("args", {})
if tool_name in self.tools:
print(f"π§ Executing {tool_name} with {args}")
result = self.tools[tool_name](**args)
return f"{tool_name}: {str(result)[:400]}"
except json.JSONDecodeError:
continue
except Exception as e:
return f"Tool execution error: {str(e)}"
return None
except Exception as e:
return f"Tool parsing error: {str(e)}"
# --- Efficient Runner ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
if not profile:
return "β Please login to Hugging Face first", None
username = profile.username
print(f"π Starting evaluation for user: {username}")
# Initialize agent
try:
agent = BalancedGAIA_Agent()
except Exception as e:
return f"β Failed to initialize agent: {e}", None
# Setup
api_url = DEFAULT_API_URL
space_id = os.getenv("SPACE_ID", "unknown")
# Fetch questions
try:
print("π₯ Fetching questions...")
response = requests.get(f"{api_url}/questions", timeout=15)
response.raise_for_status()
questions = response.json()
print(f"π Retrieved {len(questions)} questions")
except Exception as e:
return f"β Failed to fetch questions: {e}", None
# Process questions
results = []
answers = []
total_start = time.time()
for i, item in enumerate(questions):
task_id = item.get("task_id")
question = item.get("question", "")
if not task_id:
continue
print(f"\nπ [{i+1}/{len(questions)}] Task: {task_id}")
try:
answer = agent(question)
answers.append({"task_id": task_id, "submitted_answer": answer})
# Truncate for display
q_display = question[:80] + "..." if len(question) > 80 else question
a_display = answer[:100] + "..." if len(answer) > 100 else answer
results.append({
"Task": task_id[:8] + "...",
"Question": q_display,
"Answer": a_display,
"Status": "β
" if "error" not in answer.lower() and "timeout" not in answer.lower() else "β"
})
except Exception as e:
error_answer = f"PROCESSING_ERROR: {str(e)}"
answers.append({"task_id": task_id, "submitted_answer": error_answer})
results.append({
"Task": task_id[:8] + "...",
"Question": question[:80] + "..." if len(question) > 80 else question,
"Answer": error_answer,
"Status": "π₯"
})
# Memory cleanup
if i % 3 == 0:
gc.collect()
total_time = time.time() - total_start
avg_time = total_time / len(questions)
print(f"\nβ±οΈ Total processing time: {total_time:.1f}s ({avg_time:.1f}s per question)")
# Submit results
try:
print("π€ Submitting results...")
submission = {
"username": username,
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
"answers": answers
}
response = requests.post(f"{api_url}/submit", json=submission, timeout=60)
response.raise_for_status()
result = response.json()
# Calculate success rate
successful = sum(1 for r in results if r["Status"] == "β
")
success_rate = (successful / len(results)) * 100
status = (
f"π― EVALUATION COMPLETED\n"
f"π€ User: {result.get('username', username)}\n"
f"π Score: {result.get('score', 'N/A')}% "
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n"
f"β‘ Processing: {total_time:.1f}s total, {avg_time:.1f}s/question\n"
f"β
Success Rate: {success_rate:.1f}% ({successful}/{len(results)} processed)\n"
f"π¬ Message: {result.get('message', 'Evaluation completed!')}"
)
return status, pd.DataFrame(results)
except Exception as e:
error_status = (
f"β SUBMISSION FAILED\n"
f"Error: {str(e)}\n"
f"β±οΈ Processing completed in {total_time:.1f}s\n"
f"β
Questions processed: {len(results)}"
)
return error_status, pd.DataFrame(results)
# --- Clean UI ---
with gr.Blocks(title="GAIA Agent - Balanced Fast") as demo:
gr.Markdown("# β‘ GAIA Agent - Balanced Fast Mode")
gr.Markdown(
"""
**Optimized for reliability and speed:**
- 4 reasoning steps max
- 25 second timeout per question
- 150 token responses
- Enhanced error handling
"""
)
with gr.Row():
gr.LoginButton()
with gr.Row():
run_btn = gr.Button("π Run Balanced Evaluation", variant="primary", size="lg")
with gr.Row():
status = gr.Textbox(
label="π Evaluation Status & Results",
lines=8,
interactive=False,
placeholder="Ready to run evaluation. Please login first."
)
with gr.Row():
table = gr.DataFrame(
label="π Question Results",
interactive=False,
wrap=True
)
run_btn.click(
fn=run_and_submit_all,
outputs=[status, table],
show_progress=True
)
if __name__ == "__main__":
print("β‘ GAIA Agent - Balanced Fast Mode Starting...")
print(f"βοΈ Settings: {MAX_STEPS} steps, {MAX_TOKENS} tokens, {TIMEOUT_PER_QUESTION}s timeout")
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
debug=False,
show_error=True
) |