Spaces:
Sleeping
Sleeping
Upload Background_Substraction.py
Browse files- Background_Substraction.py +1121 -0
Background_Substraction.py
ADDED
@@ -0,0 +1,1121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
|
5 |
+
# In[1]:
|
6 |
+
import os
|
7 |
+
import random
|
8 |
+
import re
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
+
import seaborn as sb
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import matplotlib.colors as mplc
|
14 |
+
import subprocess
|
15 |
+
import warnings
|
16 |
+
from scipy import signal
|
17 |
+
import plotly.figure_factory as ff
|
18 |
+
import plotly
|
19 |
+
import plotly.graph_objs as go
|
20 |
+
from plotly.offline import download_plotlyjs, plot
|
21 |
+
import plotly.express as px
|
22 |
+
from my_modules import *
|
23 |
+
os.getcwd()
|
24 |
+
# In[2]:
|
25 |
+
|
26 |
+
|
27 |
+
#Silence FutureWarnings & UserWarnings
|
28 |
+
warnings.filterwarnings('ignore', category= FutureWarning)
|
29 |
+
warnings.filterwarnings('ignore', category= UserWarning)
|
30 |
+
|
31 |
+
|
32 |
+
# ## II.2. *DIRECTORIES
|
33 |
+
|
34 |
+
# In[5]:
|
35 |
+
|
36 |
+
|
37 |
+
# Set base directory
|
38 |
+
|
39 |
+
##### MAC WORKSTATION #####
|
40 |
+
#base_dir = r'/Volumes/LaboLabrie/Projets/OC_TMA_Pejovic/Temp/Zoe/CyCIF_pipeline/'
|
41 |
+
###########################
|
42 |
+
|
43 |
+
##### WINDOWS WORKSTATION #####
|
44 |
+
#base_dir = r'C:\Users\LaboLabrie\gerz2701\cyCIF-pipeline\Set_B'
|
45 |
+
###############################
|
46 |
+
|
47 |
+
##### LOCAL WORKSTATION #####
|
48 |
+
input_path = '/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431/'
|
49 |
+
#############################
|
50 |
+
|
51 |
+
#set_name = 'Set_A'
|
52 |
+
#set_name = 'test'
|
53 |
+
|
54 |
+
|
55 |
+
#present_dir = os.path.dirname(os.path.realpath(__file__))
|
56 |
+
|
57 |
+
#input_path = os.path.join(present_dir, 'wetransfer_data-zip_2024-05-17_1431')
|
58 |
+
base_dir = input_path
|
59 |
+
'''
|
60 |
+
# Function to change permissions recursively with error handling
|
61 |
+
def change_permissions_recursive(path, mode):
|
62 |
+
for root, dirs, files in os.walk(path):
|
63 |
+
for dir in dirs:
|
64 |
+
try:
|
65 |
+
os.chmod(os.path.join(root, dir), mode)
|
66 |
+
except Exception as e:
|
67 |
+
print(f"An error occurred while changing permissions for directory {os.path.join(root, dir)}: {e}")
|
68 |
+
for file in files:
|
69 |
+
try:
|
70 |
+
os.chmod(os.path.join(root, file), mode)
|
71 |
+
except Exception as e:
|
72 |
+
print(f"An error occurred while changing permissions for file {os.path.join(root, file)}: {e}")
|
73 |
+
|
74 |
+
|
75 |
+
change_permissions_recursive(base_dir, 0o777)
|
76 |
+
change_permissions_recursive('/code', 0o777)
|
77 |
+
'''
|
78 |
+
set_path = 'test'
|
79 |
+
selected_metadata_files = ['Slide_B_DD1s1.one_1.tif.csv', 'Slide_B_DD1s1.one_2.tif.csv']
|
80 |
+
ls_samples = ['Ashlar_Exposure_Time.csv', 'new_data.csv', 'DD3S1.csv', 'DD3S2.csv', 'DD3S3.csv', 'TMA.csv']
|
81 |
+
|
82 |
+
set_name = set_path
|
83 |
+
|
84 |
+
|
85 |
+
# In[7]:
|
86 |
+
|
87 |
+
|
88 |
+
project_name = set_name # Project name
|
89 |
+
step_suffix = 'bs' # Curent part (here part II)
|
90 |
+
previous_step_suffix_long = "_qc_eda" # Previous part (here QC/EDA NOTEBOOK)
|
91 |
+
|
92 |
+
# Initial input data directory
|
93 |
+
input_data_dir = os.path.join(base_dir, project_name + previous_step_suffix_long)
|
94 |
+
|
95 |
+
# BS output directories
|
96 |
+
output_data_dir = os.path.join(base_dir, project_name + "_" + step_suffix)
|
97 |
+
# BS images subdirectory
|
98 |
+
output_images_dir = os.path.join(output_data_dir,"images")
|
99 |
+
|
100 |
+
# Data and Metadata directories
|
101 |
+
# Metadata directories
|
102 |
+
metadata_dir = os.path.join(base_dir, project_name + "_metadata")
|
103 |
+
# images subdirectory
|
104 |
+
metadata_images_dir = os.path.join(metadata_dir,"images")
|
105 |
+
|
106 |
+
# Create directories if they don't already exist
|
107 |
+
for d in [base_dir, input_data_dir, output_data_dir, output_images_dir, metadata_dir, metadata_images_dir]:
|
108 |
+
if not os.path.exists(d):
|
109 |
+
print("Creation of the" , d, "directory...")
|
110 |
+
os.makedirs(d)
|
111 |
+
else :
|
112 |
+
print("The", d, "directory already exists !")
|
113 |
+
|
114 |
+
os.chdir(input_data_dir)
|
115 |
+
|
116 |
+
|
117 |
+
# In[8]:
|
118 |
+
|
119 |
+
|
120 |
+
# Verify paths
|
121 |
+
print('base_dir :', base_dir)
|
122 |
+
print('input_data_dir :', input_data_dir)
|
123 |
+
print('output_data_dir :', output_data_dir)
|
124 |
+
print('output_images_dir :', output_images_dir)
|
125 |
+
print('metadata_dir :', metadata_dir)
|
126 |
+
print('metadata_images_dir :', metadata_images_dir)
|
127 |
+
|
128 |
+
# ## II.3. FILES
|
129 |
+
#Don't forget to put your data in the projname_data directory !
|
130 |
+
# ### II.3.1. METADATA
|
131 |
+
|
132 |
+
# In[9]:
|
133 |
+
|
134 |
+
|
135 |
+
# Import all metadata we need from the QC/EDA chapter
|
136 |
+
|
137 |
+
# METADATA
|
138 |
+
filename = "marker_intensity_metadata.csv"
|
139 |
+
filename = os.path.join(metadata_dir, filename)
|
140 |
+
|
141 |
+
# Check file exists
|
142 |
+
if not os.path.exists(filename):
|
143 |
+
print("WARNING: Could not find desired file: "+filename)
|
144 |
+
else :
|
145 |
+
print("The",filename,"file was imported for further analysis!")
|
146 |
+
|
147 |
+
# Open, read in information
|
148 |
+
metadata = pd.read_csv(filename)
|
149 |
+
|
150 |
+
# Verify size with verify_line_no() function in my_modules.py
|
151 |
+
#verify_line_no(filename, metadata.shape[0] + 1)
|
152 |
+
|
153 |
+
# Verify headers
|
154 |
+
exp_cols = ['Round','Target','Channel','target_lower','full_column','marker','localisation']
|
155 |
+
compare_headers(exp_cols, metadata.columns.values, "Marker metadata file")
|
156 |
+
|
157 |
+
metadata = metadata.dropna()
|
158 |
+
metadata.head()
|
159 |
+
|
160 |
+
# ### II.3.2. NOT_INTENSITIES
|
161 |
+
|
162 |
+
# In[10]:
|
163 |
+
|
164 |
+
|
165 |
+
# NOT_INTENSITIES
|
166 |
+
filename = "not_intensities.csv"
|
167 |
+
filename = os.path.join(metadata_dir, filename)
|
168 |
+
|
169 |
+
# Check file exists
|
170 |
+
if not os.path.exists(filename):
|
171 |
+
print("WARNING: Could not find desired file: "+filename)
|
172 |
+
else :
|
173 |
+
print("The",filename,"file was imported for further analysis!")
|
174 |
+
|
175 |
+
# Open, read in information
|
176 |
+
#not_intensities = []
|
177 |
+
with open(filename, 'r') as fh:
|
178 |
+
not_intensities = fh.read().strip().split("\n")
|
179 |
+
# take str, strip whitespace, split on new line character
|
180 |
+
|
181 |
+
not_intensities = ['Nuc_X', 'Nuc_X_Inv', 'Nuc_Y', 'Nuc_Y_Inv', 'Nucleus_Roundness', 'Nucleus_Size', 'Cell_Size',
|
182 |
+
'ROI_index', 'Sample_ID', 'replicate_ID', 'Cell_ID','cell_type', 'cell_subtype', 'cluster','ID',
|
183 |
+
'Cytoplasm_Size', 'immune_checkpoint', 'Unique_ROI_index', 'Patient', 'Primary_chem(1)_vs_surg(0)']
|
184 |
+
|
185 |
+
# Verify size
|
186 |
+
print("Verifying data read from file is the correct length...\n")
|
187 |
+
verify_line_no(filename, len(not_intensities))
|
188 |
+
|
189 |
+
# Print to console
|
190 |
+
print("not_intensities =\n", not_intensities)
|
191 |
+
|
192 |
+
import os
|
193 |
+
import pandas as pd
|
194 |
+
|
195 |
+
# Function to compare headers (assuming you have this function defined in your my_modules.py)
|
196 |
+
def compare_headers(expected, actual, description):
|
197 |
+
missing = [col for col in expected if col not in actual]
|
198 |
+
if missing:
|
199 |
+
print(f"WARNING: Missing expected columns in {description}: {missing}")
|
200 |
+
else:
|
201 |
+
print(f"All expected columns are present in {description}.")
|
202 |
+
|
203 |
+
# Get the current script directory
|
204 |
+
present_dir = os.path.dirname(os.path.realpath(__file__))
|
205 |
+
|
206 |
+
# Define the input path
|
207 |
+
input_path = os.path.join(present_dir, 'wetransfer_data-zip_2024-05-17_1431')
|
208 |
+
base_dir = input_path
|
209 |
+
set_path = 'test'
|
210 |
+
|
211 |
+
# Project and step names
|
212 |
+
project_name = set_path # Project name
|
213 |
+
previous_step_suffix_long = "_qc_eda" # Previous part (here QC/EDA NOTEBOOK)
|
214 |
+
|
215 |
+
# Initial input data directory
|
216 |
+
input_data_dir = os.path.join(base_dir, project_name + previous_step_suffix_long)
|
217 |
+
|
218 |
+
# Metadata directories
|
219 |
+
metadata_dir = os.path.join(base_dir, project_name + "_metadata")
|
220 |
+
metadata_images_dir = os.path.join(metadata_dir, "images")
|
221 |
+
|
222 |
+
# Define writable directory
|
223 |
+
writable_directory = '/tmp'
|
224 |
+
|
225 |
+
# Check and read metadata file
|
226 |
+
filename = "marker_intensity_metadata.csv"
|
227 |
+
filename = os.path.join(metadata_dir, filename)
|
228 |
+
|
229 |
+
# Check if the file exists
|
230 |
+
if not os.path.exists(filename):
|
231 |
+
print("WARNING: Could not find desired file: " + filename)
|
232 |
+
else:
|
233 |
+
print("The", filename, "file was imported for further analysis!")
|
234 |
+
|
235 |
+
# Open, read in information
|
236 |
+
metadata = pd.read_csv(filename)
|
237 |
+
|
238 |
+
# Verify headers
|
239 |
+
exp_cols = ['Round', 'Target', 'Channel', 'target_lower', 'full_column', 'marker', 'localisation']
|
240 |
+
compare_headers(exp_cols, metadata.columns.values, "Marker metadata file")
|
241 |
+
|
242 |
+
metadata = metadata.dropna()
|
243 |
+
print(metadata.head())
|
244 |
+
|
245 |
+
# Example of writing to the writable directory
|
246 |
+
output_file_path = os.path.join(writable_directory, 'processed_metadata.csv')
|
247 |
+
try:
|
248 |
+
metadata.to_csv(output_file_path, index=False)
|
249 |
+
print(f"Processed metadata written successfully to {output_file_path}")
|
250 |
+
except PermissionError as e:
|
251 |
+
print(f"Permission denied: Unable to write the file at {output_file_path}. Error: {e}")
|
252 |
+
except Exception as e:
|
253 |
+
print(f"An error occurred: {e}")
|
254 |
+
|
255 |
+
# ### II.3.3. FULL_TO_SHORT_COLUMN_NAMES
|
256 |
+
|
257 |
+
# In[11]:
|
258 |
+
|
259 |
+
|
260 |
+
# FULL_TO_SHORT_COLUMN_NAMES
|
261 |
+
filename = "full_to_short_column_names.csv"
|
262 |
+
filename = os.path.join(metadata_dir, filename)
|
263 |
+
|
264 |
+
# Check file exists
|
265 |
+
if not os.path.exists(filename):
|
266 |
+
print("WARNING: Could not find desired file: " + filename)
|
267 |
+
else :
|
268 |
+
print("The",filename,"file was imported for further analysis!")
|
269 |
+
|
270 |
+
# Open, read in information
|
271 |
+
df = pd.read_csv(filename, header = 0)
|
272 |
+
|
273 |
+
# Verify size
|
274 |
+
print("Verifying data read from file is the correct length...\n")
|
275 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
276 |
+
|
277 |
+
# Turn into dictionary
|
278 |
+
full_to_short_names = df.set_index('full_name').T.to_dict('records')[0]
|
279 |
+
|
280 |
+
# Print information
|
281 |
+
print('full_to_short_names =\n',full_to_short_names)
|
282 |
+
|
283 |
+
|
284 |
+
# ### II.3.4. SHORT_TO_FULL_COLUMN_NAMES
|
285 |
+
|
286 |
+
# In[12]:
|
287 |
+
|
288 |
+
|
289 |
+
# SHORT_TO_FULL_COLUMN_NAMES
|
290 |
+
filename = "short_to_full_column_names.csv"
|
291 |
+
filename = os.path.join(metadata_dir, filename)
|
292 |
+
|
293 |
+
# Check file exists
|
294 |
+
if not os.path.exists(filename):
|
295 |
+
print("WARNING: Could not find desired file: " + filename)
|
296 |
+
else :
|
297 |
+
print("The",filename,"file was imported for further analysis!")
|
298 |
+
|
299 |
+
# Open, read in information
|
300 |
+
df = pd.read_csv(filename, header = 0)
|
301 |
+
|
302 |
+
# Verify size
|
303 |
+
print("Verifying data read from file is the correct length...\n")
|
304 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
305 |
+
|
306 |
+
# Turn into dictionary
|
307 |
+
short_to_full_names = df.set_index('short_name').T.to_dict('records')[0]
|
308 |
+
|
309 |
+
# Print information
|
310 |
+
print('short_to_full_names =\n',short_to_full_names)
|
311 |
+
|
312 |
+
|
313 |
+
# ### II.3.5. SAMPLES COLORS
|
314 |
+
|
315 |
+
# In[13]:
|
316 |
+
|
317 |
+
|
318 |
+
# COLORS INFORMATION
|
319 |
+
filename = "sample_color_data.csv"
|
320 |
+
filename = os.path.join(metadata_dir, filename)
|
321 |
+
|
322 |
+
# Check file exists
|
323 |
+
if not os.path.exists(filename):
|
324 |
+
print("WARNING: Could not find desired file: " + filename)
|
325 |
+
else :
|
326 |
+
print("The",filename,"file was imported for further analysis!")
|
327 |
+
|
328 |
+
# Open, read in information
|
329 |
+
df = pd.read_csv(filename, header = 0)
|
330 |
+
df = df.drop(columns = ['hex'])
|
331 |
+
|
332 |
+
|
333 |
+
# our tuple of float values for rgb, (r, g, b) was read in
|
334 |
+
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
335 |
+
# substrings and convert them back into floats
|
336 |
+
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
337 |
+
|
338 |
+
# Verify size
|
339 |
+
print("Verifying data read from file is the correct length...\n")
|
340 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
341 |
+
|
342 |
+
# Turn into dictionary
|
343 |
+
sample_color_dict = df.set_index('Sample_ID')['rgb'].to_dict()
|
344 |
+
|
345 |
+
# Print information
|
346 |
+
print('sample_color_dict =\n',sample_color_dict)
|
347 |
+
sample_color_dict = pd.DataFrame.from_dict(sample_color_dict, orient='index', columns=['R', 'G', 'B'])
|
348 |
+
|
349 |
+
|
350 |
+
# In[14]:
|
351 |
+
|
352 |
+
|
353 |
+
sample_color_dict
|
354 |
+
|
355 |
+
|
356 |
+
# ### II.3.6. CHANNELS COLORS
|
357 |
+
|
358 |
+
# In[15]:
|
359 |
+
|
360 |
+
|
361 |
+
# CHANNELS
|
362 |
+
filename = "channel_color_data.csv"
|
363 |
+
filename = os.path.join(metadata_dir, filename)
|
364 |
+
|
365 |
+
# Check file exists
|
366 |
+
if not os.path.exists(filename):
|
367 |
+
print("WARNING: Could not find desired file: "+filename)
|
368 |
+
else :
|
369 |
+
print("The",filename,"file was imported for further analysis!")
|
370 |
+
|
371 |
+
# Open, read in information
|
372 |
+
df = pd.read_csv(filename, header = 0)
|
373 |
+
df = df.drop(columns = ['hex'])
|
374 |
+
|
375 |
+
# our tuple of float values for rgb, (r, g, b) was read in
|
376 |
+
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
377 |
+
# substrings and convert them back into floats
|
378 |
+
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
379 |
+
|
380 |
+
# Verify size
|
381 |
+
print("Verifying data read from file is the correct length...\n")
|
382 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
383 |
+
|
384 |
+
# Turn into dictionary
|
385 |
+
channel_color_dict = df.set_index('Channel')['rgb'].to_dict()
|
386 |
+
|
387 |
+
# Print information
|
388 |
+
print('channel_color_dict =\n',channel_color_dict)
|
389 |
+
channel_color_dict = pd.DataFrame.from_dict(channel_color_dict, orient='index', columns=['R', 'G', 'B'])
|
390 |
+
|
391 |
+
|
392 |
+
# In[16]:
|
393 |
+
|
394 |
+
|
395 |
+
channel_color_dict
|
396 |
+
|
397 |
+
|
398 |
+
# ### II.3.7. ROUNDS COLORS
|
399 |
+
|
400 |
+
# In[17]:
|
401 |
+
|
402 |
+
|
403 |
+
# ROUND
|
404 |
+
filename = "round_color_data.csv"
|
405 |
+
filename = os.path.join(metadata_dir, filename)
|
406 |
+
|
407 |
+
# Check file exists
|
408 |
+
if not os.path.exists(filename):
|
409 |
+
print("WARNING: Could not find desired file: "+filename)
|
410 |
+
else :
|
411 |
+
print("The",filename,"file was imported for further analysis!")
|
412 |
+
|
413 |
+
# Open, read in information
|
414 |
+
df = pd.read_csv(filename, header = 0)
|
415 |
+
df = df.drop(columns = ['hex'])
|
416 |
+
|
417 |
+
# our tuple of float values for rgb, (r, g, b) was read in
|
418 |
+
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
419 |
+
# substrings and convert them back into floats
|
420 |
+
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
421 |
+
|
422 |
+
# Verify size
|
423 |
+
print("Verifying data read from file is the correct length...\n")
|
424 |
+
#verify_line_no(filename, df.shape[0] + 1)
|
425 |
+
|
426 |
+
# Turn into dictionary
|
427 |
+
round_color_dict = df.set_index('Round')['rgb'].to_dict()
|
428 |
+
|
429 |
+
# Print information
|
430 |
+
print('round_color_dict =\n',round_color_dict)
|
431 |
+
round_color_dict = pd.DataFrame.from_dict(round_color_dict, orient='index', columns=['R', 'G', 'B'])
|
432 |
+
|
433 |
+
|
434 |
+
# In[18]:
|
435 |
+
|
436 |
+
|
437 |
+
round_color_dict
|
438 |
+
|
439 |
+
|
440 |
+
# ### II.3.8. DATA
|
441 |
+
|
442 |
+
# In[19]:
|
443 |
+
|
444 |
+
|
445 |
+
# DATA
|
446 |
+
# List files in the directory
|
447 |
+
# Check if the directory exists
|
448 |
+
if os.path.exists(input_data_dir):
|
449 |
+
ls_samples = [sample for sample in os.listdir(input_data_dir) if sample.endswith("_qc_eda.csv")]
|
450 |
+
|
451 |
+
print("The following CSV files were detected:")
|
452 |
+
print([sample for sample in ls_samples])
|
453 |
+
else:
|
454 |
+
print(f"The directory {input_data_dir} does not exist.")
|
455 |
+
|
456 |
+
|
457 |
+
# In[20]:
|
458 |
+
|
459 |
+
|
460 |
+
# Import all the others files
|
461 |
+
dfs = {}
|
462 |
+
|
463 |
+
# Set variable to hold default header values
|
464 |
+
# First gather information on expected headers using first file in ls_samples
|
465 |
+
# Read in the first row of the file corresponding to the first sample (index = 0) in ls_samples
|
466 |
+
df = pd.read_csv(os.path.join(input_data_dir, ls_samples[0]) , index_col = 0, nrows = 1)
|
467 |
+
expected_headers = df.columns.values
|
468 |
+
print(expected_headers)
|
469 |
+
|
470 |
+
###############################
|
471 |
+
# !! This may take a while !! #
|
472 |
+
###############################
|
473 |
+
for sample in ls_samples:
|
474 |
+
file_path = os.path.join(input_data_dir,sample)
|
475 |
+
|
476 |
+
try:
|
477 |
+
# Read the CSV file
|
478 |
+
df = pd.read_csv(file_path, index_col=0)
|
479 |
+
# Check if the DataFrame is empty, if so, don't continue trying to process df and remove it
|
480 |
+
|
481 |
+
if not df.empty:
|
482 |
+
# Reorder the columns to match the expected headers list
|
483 |
+
df = df.reindex(columns=expected_headers)
|
484 |
+
print(sample, "file is processed !\n")
|
485 |
+
#print(df)
|
486 |
+
|
487 |
+
except pd.errors.EmptyDataError:
|
488 |
+
print(f'\nEmpty data error in {sample} file. Removing from analysis...')
|
489 |
+
ls_samples.remove(sample)
|
490 |
+
|
491 |
+
# Add df to dfs
|
492 |
+
dfs[sample] = df
|
493 |
+
|
494 |
+
#print(dfs)
|
495 |
+
|
496 |
+
|
497 |
+
# In[21]:
|
498 |
+
|
499 |
+
|
500 |
+
# Merge dfs into one df
|
501 |
+
df = pd.concat(dfs.values(), ignore_index=False , sort = False)
|
502 |
+
#del dfs
|
503 |
+
df.head()
|
504 |
+
|
505 |
+
|
506 |
+
# In[22]:
|
507 |
+
|
508 |
+
|
509 |
+
df.shape
|
510 |
+
|
511 |
+
|
512 |
+
# In[23]:
|
513 |
+
|
514 |
+
|
515 |
+
# Check for NaN entries (should not be any unless columns do not align)
|
516 |
+
# False means no NaN entries
|
517 |
+
# True means NaN entries
|
518 |
+
df.isnull().any().any()
|
519 |
+
|
520 |
+
|
521 |
+
# ## II.4. *FILTERING
|
522 |
+
|
523 |
+
# In[24]:
|
524 |
+
|
525 |
+
|
526 |
+
print("Number of cells before filtering :", df.shape[0])
|
527 |
+
cells_before_filter = f"Number of cells before filtering :{df.shape[0]}"
|
528 |
+
|
529 |
+
|
530 |
+
# In[25]:
|
531 |
+
|
532 |
+
|
533 |
+
#print(df)
|
534 |
+
|
535 |
+
|
536 |
+
# In[26]:
|
537 |
+
|
538 |
+
|
539 |
+
# Delete small cells and objects w/high AF555 Signal (RBCs)
|
540 |
+
# We usually use the 95th percentile calculated during QC_EDA
|
541 |
+
df = df.loc[(df['Nucleus_Size'] > 42 )]
|
542 |
+
df = df.loc[(df['Nucleus_Size'] < 216)]
|
543 |
+
print("Number of cells after filtering on nucleus size:", df.shape[0])
|
544 |
+
|
545 |
+
df = df.loc[(df['AF555_Cell_Intensity_Average'] < 2000)]
|
546 |
+
print("Number of cells after filtering on AF555A ___ intensity:", df.shape[0])
|
547 |
+
cells_after_filter_nucleus = f"Number of cells after filtering on nucleus size: {df.shape[0]}"
|
548 |
+
cells_after_filter_intensity = f"Number of cells after filtering on AF555A ___ intensity: {df.shape[0]}"
|
549 |
+
|
550 |
+
|
551 |
+
# In[27]:
|
552 |
+
|
553 |
+
|
554 |
+
# Assign cell type
|
555 |
+
# Assign tumor cells at each row at first (random assigning here just for development purposes)
|
556 |
+
# Generate random values for cell_type column
|
557 |
+
random_values = np.random.randint(0, 10, size=len(df))
|
558 |
+
|
559 |
+
# Assign cell type based on random values
|
560 |
+
def assign_cell_type(n):
|
561 |
+
return np.random.choice(['STROMA','CANCER','IMMUNE','ENDOTHELIAL'])
|
562 |
+
|
563 |
+
df['cell_type'] = np.vectorize(assign_cell_type)(random_values)
|
564 |
+
df['cell_subtype'] = df['cell_type'].copy()
|
565 |
+
|
566 |
+
|
567 |
+
# In[28]:
|
568 |
+
|
569 |
+
|
570 |
+
filtered_dataframe = df
|
571 |
+
df.head()
|
572 |
+
|
573 |
+
|
574 |
+
# In[29]:
|
575 |
+
|
576 |
+
|
577 |
+
quality_control_df = filtered_dataframe
|
578 |
+
|
579 |
+
|
580 |
+
# In[30]:
|
581 |
+
|
582 |
+
|
583 |
+
def check_index_format(index_str, ls_samples):
|
584 |
+
"""
|
585 |
+
Checks if the given index string follows the specified format.
|
586 |
+
|
587 |
+
Args:
|
588 |
+
index_str (str): The index string to be checked.
|
589 |
+
ls_samples (list): A list of valid sample names.
|
590 |
+
|
591 |
+
Returns:
|
592 |
+
bool: True if the index string follows the format, False otherwise.
|
593 |
+
"""
|
594 |
+
# Split the index string into parts
|
595 |
+
parts = index_str.split('_')
|
596 |
+
|
597 |
+
# Check if there are exactly 3 parts
|
598 |
+
if len(parts) != 3:
|
599 |
+
print(len(parts))
|
600 |
+
return False
|
601 |
+
|
602 |
+
# Check if the first part is in ls_samples
|
603 |
+
sample_name = parts[0]
|
604 |
+
if f'{sample_name}_qc_eda.csv' not in ls_samples:
|
605 |
+
print(sample_name)
|
606 |
+
return False
|
607 |
+
|
608 |
+
# Check if the second part is in ['cell', 'cytoplasm', 'nucleus']
|
609 |
+
location = parts[1]
|
610 |
+
valid_locations = ['Cell', 'Cytoplasm', 'Nucleus']
|
611 |
+
if location not in valid_locations:
|
612 |
+
print(location)
|
613 |
+
return False
|
614 |
+
|
615 |
+
# Check if the third part is a number
|
616 |
+
try:
|
617 |
+
index = int(parts[2])
|
618 |
+
except ValueError:
|
619 |
+
print(index)
|
620 |
+
return False
|
621 |
+
|
622 |
+
# If all checks pass, return True
|
623 |
+
return True
|
624 |
+
|
625 |
+
|
626 |
+
# In[31]:
|
627 |
+
|
628 |
+
|
629 |
+
# Let's take a look at a few features to make sure our dataframe is as expected
|
630 |
+
df.index
|
631 |
+
def check_format_ofindex(index):
|
632 |
+
for index in df.index:
|
633 |
+
check_index = check_index_format(index, ls_samples)
|
634 |
+
if check_index is False:
|
635 |
+
index_format = "Bad"
|
636 |
+
return index_format
|
637 |
+
|
638 |
+
index_format = "Good"
|
639 |
+
return index_format
|
640 |
+
print(check_format_ofindex(df.index))
|
641 |
+
|
642 |
+
|
643 |
+
# In[32]:
|
644 |
+
|
645 |
+
|
646 |
+
import panel as pn
|
647 |
+
import pandas as pd
|
648 |
+
|
649 |
+
def quality_check(file, not_intensities):
|
650 |
+
# Load the output file
|
651 |
+
df = file
|
652 |
+
|
653 |
+
# Check Index
|
654 |
+
check_index = check_format_ofindex(df.index)
|
655 |
+
|
656 |
+
# Check Shape
|
657 |
+
check_shape = df.shape
|
658 |
+
|
659 |
+
# Check for NaN entries
|
660 |
+
check_no_null = df.isnull().any().any()
|
661 |
+
|
662 |
+
mean_intensity = df.loc[:, ~df.columns.isin(not_intensities)].mean(axis=1)
|
663 |
+
if (mean_intensity == 0).any():
|
664 |
+
df = df.loc[mean_intensity > 0, :]
|
665 |
+
print("df.shape after removing 0 mean values: ", df.shape)
|
666 |
+
check_zero_intensities = f'Shape after removing 0 mean values: {df.shape}'
|
667 |
+
else:
|
668 |
+
print("No zero intensity values.")
|
669 |
+
check_zero_intensities = "No zero intensity values."
|
670 |
+
|
671 |
+
# Create a quality check results table
|
672 |
+
quality_check_results_table = pd.DataFrame({
|
673 |
+
'Check': ['Index', 'Shape', 'Check for NaN Entries', 'Check for Zero Intensities'],
|
674 |
+
'Result': [str(check_index), str(check_shape), str(check_no_null), check_zero_intensities]
|
675 |
+
})
|
676 |
+
|
677 |
+
# Create a quality check results component
|
678 |
+
quality_check_results_component = pn.Card(
|
679 |
+
pn.pane.DataFrame(quality_check_results_table),
|
680 |
+
title="Quality Control Results",
|
681 |
+
header_background="#2196f3",
|
682 |
+
header_color="white",
|
683 |
+
)
|
684 |
+
|
685 |
+
return quality_check_results_component
|
686 |
+
|
687 |
+
|
688 |
+
# ## II.5. CELL TYPES COLORS
|
689 |
+
# Establish colors to use throughout workflow
|
690 |
+
|
691 |
+
# we want colors that are categorical, since Cell Type is a non-ordered category.
|
692 |
+
# A categorical color palette will have dissimilar colors.
|
693 |
+
# Get those unique colors
|
694 |
+
cell_types = ['STROMA','CANCER','IMMUNE','ENDOTHELIAL']
|
695 |
+
color_values = sb.color_palette("hls", n_colors = len(cell_types))
|
696 |
+
# each color value is a tuple of three values: (R, G, B)
|
697 |
+
|
698 |
+
print("Unique cell types are:",df.cell_type.unique())
|
699 |
+
# Display those unique colors
|
700 |
+
sb.palplot(sb.color_palette(color_values))
|
701 |
+
# In[33]:
|
702 |
+
|
703 |
+
|
704 |
+
# Define your custom colors for each cell type
|
705 |
+
custom_colors = {
|
706 |
+
'CANCER': (0.1333, 0.5451, 0.1333),
|
707 |
+
'STROMA': (0.4, 0.4, 0.4),
|
708 |
+
'IMMUNE': (1, 1, 0),
|
709 |
+
'ENDOTHELIAL': (0.502, 0, 0.502)
|
710 |
+
}
|
711 |
+
|
712 |
+
# Retrieve the list of cell types
|
713 |
+
cell_types = list(custom_colors.keys())
|
714 |
+
|
715 |
+
# Extract the corresponding colors from the dictionary
|
716 |
+
color_values = [custom_colors[cell] for cell in cell_types]
|
717 |
+
|
718 |
+
# Display the colors
|
719 |
+
sb.palplot(sb.color_palette(color_values))
|
720 |
+
|
721 |
+
|
722 |
+
# In[34]:
|
723 |
+
|
724 |
+
|
725 |
+
# Store in a dctionnary
|
726 |
+
celltype_color_dict = dict(zip(cell_types, color_values))
|
727 |
+
celltype_color_dict
|
728 |
+
|
729 |
+
|
730 |
+
# In[35]:
|
731 |
+
|
732 |
+
|
733 |
+
celltype_color_df = pd.DataFrame.from_dict(celltype_color_dict, orient='index', columns=['R', 'G', 'B'])
|
734 |
+
|
735 |
+
|
736 |
+
# In[36]:
|
737 |
+
|
738 |
+
|
739 |
+
# Save color information (mapping and legend) to metadata directory
|
740 |
+
# Create dataframe
|
741 |
+
celltype_color_df = color_dict_to_df(celltype_color_dict, "cell_type")
|
742 |
+
celltype_color_df.head()
|
743 |
+
|
744 |
+
# Save to file in metadatadirectory
|
745 |
+
present_dir = os.path.dirname(os.path.realpath(__file__))
|
746 |
+
filename = os.path.join(present_dir, "celltype_color_data.csv")
|
747 |
+
#filename = "celltype_color_data.csv"
|
748 |
+
filename = os.path.join(metadata_dir, filename)
|
749 |
+
celltype_color_df.to_csv(filename, index = False)
|
750 |
+
print("File" + filename + " was created!")
|
751 |
+
|
752 |
+
|
753 |
+
# In[37]:
|
754 |
+
|
755 |
+
|
756 |
+
celltype_color_df.head()
|
757 |
+
|
758 |
+
|
759 |
+
# In[38]:
|
760 |
+
|
761 |
+
|
762 |
+
# Legend of cell type info only
|
763 |
+
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
764 |
+
g.axis('off')
|
765 |
+
handles = []
|
766 |
+
for item in celltype_color_dict.keys():
|
767 |
+
h = g.bar(0,0, color = celltype_color_dict[item],
|
768 |
+
label = item, linewidth =0)
|
769 |
+
handles.append(h)
|
770 |
+
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Cell type'),
|
771 |
+
|
772 |
+
|
773 |
+
filename = "Celltype_legend.png"
|
774 |
+
filename = os.path.join(metadata_images_dir, filename)
|
775 |
+
plt.savefig(filename, bbox_inches = 'tight')
|
776 |
+
|
777 |
+
|
778 |
+
# In[39]:
|
779 |
+
|
780 |
+
|
781 |
+
metadata
|
782 |
+
|
783 |
+
|
784 |
+
# In[40]:
|
785 |
+
|
786 |
+
|
787 |
+
df.columns.values
|
788 |
+
|
789 |
+
|
790 |
+
# In[41]:
|
791 |
+
|
792 |
+
|
793 |
+
df.shape
|
794 |
+
|
795 |
+
|
796 |
+
# In[42]:
|
797 |
+
|
798 |
+
|
799 |
+
metadata.shape
|
800 |
+
|
801 |
+
|
802 |
+
# ## II.6. *CELL SUBTYPES COLORS
|
803 |
+
|
804 |
+
# In[43]:
|
805 |
+
|
806 |
+
|
807 |
+
# Establish colors to use throughout workflow
|
808 |
+
|
809 |
+
# we want colors that are categorical, since Cell Type is a non-ordered category.
|
810 |
+
# A categorical color palette will have dissimilar colors.
|
811 |
+
# Get those unique colors
|
812 |
+
cell_subtypes = ['DC','B', 'TCD4','TCD8','M1','M2','Treg', \
|
813 |
+
'IMMUNE_OTHER', 'CANCER', 'αSMA_myCAF',\
|
814 |
+
'STROMA_OTHER', 'ENDOTHELIAL']
|
815 |
+
color_values = sb.color_palette("Paired",n_colors = len(cell_subtypes))
|
816 |
+
# each color value is a tuple of three values: (R, G, B)
|
817 |
+
|
818 |
+
print("Unique cell types are:",df.cell_subtype.unique())
|
819 |
+
# Display those unique colors
|
820 |
+
sb.palplot(sb.color_palette(color_values))
|
821 |
+
|
822 |
+
|
823 |
+
# In[44]:
|
824 |
+
|
825 |
+
|
826 |
+
# Store in a dctionnary
|
827 |
+
cellsubtype_color_dict = dict(zip(cell_subtypes, color_values))
|
828 |
+
cellsubtype_color_dict
|
829 |
+
|
830 |
+
|
831 |
+
# In[45]:
|
832 |
+
|
833 |
+
|
834 |
+
cellsubtype_color_df = pd.DataFrame.from_dict(cellsubtype_color_dict, orient='index', columns=['R', 'G', 'B'])
|
835 |
+
|
836 |
+
|
837 |
+
# In[46]:
|
838 |
+
|
839 |
+
|
840 |
+
# Save color information (mapping and legend) to metadata directory
|
841 |
+
# Create dataframe
|
842 |
+
cellsubtype_color_df = color_dict_to_df(cellsubtype_color_dict, "cell_subtype")
|
843 |
+
|
844 |
+
# Save to file in metadatadirectory
|
845 |
+
filename = "cellsubtype_color_data.csv"
|
846 |
+
filename = os.path.join(metadata_dir, filename)
|
847 |
+
cellsubtype_color_df.to_csv(filename, index = False)
|
848 |
+
print("File" + filename + " was created!")
|
849 |
+
|
850 |
+
|
851 |
+
# In[47]:
|
852 |
+
|
853 |
+
|
854 |
+
cellsubtype_color_df.head()
|
855 |
+
|
856 |
+
|
857 |
+
# In[48]:
|
858 |
+
|
859 |
+
|
860 |
+
# Legend of cell type info only
|
861 |
+
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
862 |
+
g.axis('off')
|
863 |
+
handles = []
|
864 |
+
for item in cellsubtype_color_dict.keys():
|
865 |
+
h = g.bar(0,0, color = cellsubtype_color_dict[item],
|
866 |
+
label = item, linewidth =0)
|
867 |
+
handles.append(h)
|
868 |
+
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Cell subtype'),
|
869 |
+
|
870 |
+
|
871 |
+
filename = "Cellsubtype_legend.png"
|
872 |
+
filename = os.path.join(metadata_images_dir, filename)
|
873 |
+
plt.savefig(filename, bbox_inches = 'tight')
|
874 |
+
|
875 |
+
|
876 |
+
# ## II.7. IMMUNE CHECKPOINT COLORS
|
877 |
+
|
878 |
+
# In[49]:
|
879 |
+
|
880 |
+
|
881 |
+
# Assign IMMUNE SUBTYPES
|
882 |
+
df['cell_subtype'] = df['cell_type'].copy()
|
883 |
+
df['immune_checkpoint'] = 'none'
|
884 |
+
df
|
885 |
+
|
886 |
+
immune_checkpoint = ['B7H4', 'PDL1', 'PD1', 'None']
|
887 |
+
color_values = sb.color_palette("husl",n_colors=len(immune_checkpoint))
|
888 |
+
# each color value is a tuple of three values: (R, G, B)
|
889 |
+
|
890 |
+
print("Unique immune checkpoint are:",df.immune_checkpoint.unique())
|
891 |
+
# Display those unique colors
|
892 |
+
sb.palplot(sb.color_palette(color_values))
|
893 |
+
# In[50]:
|
894 |
+
|
895 |
+
|
896 |
+
immune_checkpoint = ['B7H4', 'PDL1', 'PD1', 'B7H4_PDL1', 'None']
|
897 |
+
|
898 |
+
# Base colors for the primary checkpoints
|
899 |
+
base_colors = sb.color_palette("husl", n_colors=3) # Three distinct colors
|
900 |
+
|
901 |
+
# Function to mix two RGB colors
|
902 |
+
def mix_colors(color1, color2):
|
903 |
+
return tuple((c1 + c2) / 2 for c1, c2 in zip(color1, color2))
|
904 |
+
|
905 |
+
# Generate mixed colors for the combinations of checkpoints
|
906 |
+
mixed_colors = [
|
907 |
+
mix_colors(base_colors[0], base_colors[1]), # Mix B7H4 and PDL1
|
908 |
+
# mix_colors(base_colors[0], base_colors[2]), # Mix B7H4 and PD1
|
909 |
+
# mix_colors(base_colors[1], base_colors[2]), # Mix PDL1 and PD1
|
910 |
+
tuple(np.mean(base_colors, axis=0)) # Mix B7H4, PDL1, and PD1
|
911 |
+
]
|
912 |
+
|
913 |
+
# Adding the color for 'None'
|
914 |
+
#none_color = [(0.8, 0.8, 0.8)] # A shade of gray
|
915 |
+
|
916 |
+
# Combine all colors into one list
|
917 |
+
color_values = base_colors + mixed_colors #+ none_color
|
918 |
+
|
919 |
+
# Display unique immune checkpoint combinations
|
920 |
+
print("Unique immune checkpoint combinations are:", immune_checkpoint)
|
921 |
+
# Display the unique colors
|
922 |
+
sb.palplot(color_values)
|
923 |
+
|
924 |
+
|
925 |
+
# In[51]:
|
926 |
+
|
927 |
+
|
928 |
+
# Store in a dctionnary
|
929 |
+
immunecheckpoint_color_dict = dict(zip(immune_checkpoint, color_values))
|
930 |
+
immunecheckpoint_color_dict
|
931 |
+
|
932 |
+
|
933 |
+
# In[52]:
|
934 |
+
|
935 |
+
|
936 |
+
# Save color information (mapping and legend) to metadata directory
|
937 |
+
# Create dataframe
|
938 |
+
immunecheckpoint_color_df = color_dict_to_df(immunecheckpoint_color_dict, "immune_checkpoint")
|
939 |
+
immunecheckpoint_color_df.head()
|
940 |
+
|
941 |
+
# Save to file in metadatadirectory
|
942 |
+
filename = "immunecheckpoint_color_data.csv"
|
943 |
+
filename = os.path.join(metadata_dir, filename)
|
944 |
+
immunecheckpoint_color_df.to_csv(filename, index = False)
|
945 |
+
print("File " + filename + " was created!")
|
946 |
+
|
947 |
+
|
948 |
+
# In[53]:
|
949 |
+
|
950 |
+
|
951 |
+
# Legend of cell type info only
|
952 |
+
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
953 |
+
g.axis('off')
|
954 |
+
handles = []
|
955 |
+
for item in immunecheckpoint_color_dict.keys():
|
956 |
+
h = g.bar(0,0, color = immunecheckpoint_color_dict[item],
|
957 |
+
label = item, linewidth =0)
|
958 |
+
handles.append(h)
|
959 |
+
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Immune checkpoint'),
|
960 |
+
|
961 |
+
|
962 |
+
filename = "Cellsubtype_legend.png"
|
963 |
+
filename = os.path.join(metadata_images_dir, filename)
|
964 |
+
plt.savefig(filename, bbox_inches = 'tight')
|
965 |
+
|
966 |
+
|
967 |
+
# ## II.7. BACKGROUND SUBSTRACTION
|
968 |
+
|
969 |
+
# In[54]:
|
970 |
+
|
971 |
+
|
972 |
+
def do_background_sub(col, df, metadata):
|
973 |
+
#print(col.name)
|
974 |
+
location = metadata.loc[metadata['full_column'] == col.name, 'localisation'].values[0]
|
975 |
+
#print('location = ' + location)
|
976 |
+
channel = metadata.loc[metadata['full_column'] == col.name, 'Channel'].values[0]
|
977 |
+
#print('channel = ' + channel)
|
978 |
+
af_target = metadata.loc[
|
979 |
+
(metadata['Channel']==channel) \
|
980 |
+
& (metadata['localisation']==location) \
|
981 |
+
& (metadata['target_lower'].str.contains(r'^af\d{3}$')),\
|
982 |
+
'full_column'].values[0]
|
983 |
+
return col - df.loc[:,af_target]
|
984 |
+
|
985 |
+
|
986 |
+
# In[55]:
|
987 |
+
|
988 |
+
|
989 |
+
metadata_with_localisation = metadata
|
990 |
+
metadata_with_localisation
|
991 |
+
|
992 |
+
|
993 |
+
# In[56]:
|
994 |
+
|
995 |
+
|
996 |
+
#Normalization
|
997 |
+
|
998 |
+
df.loc[:, ~df.columns.isin(not_intensities)] = \
|
999 |
+
df.loc[:, ~df.columns.isin(not_intensities)].apply(lambda column: divide_exp_time(column, 'Exp', metadata), axis = 0)
|
1000 |
+
|
1001 |
+
|
1002 |
+
# In[57]:
|
1003 |
+
|
1004 |
+
|
1005 |
+
normalization_df = df
|
1006 |
+
normalization_df.head()
|
1007 |
+
|
1008 |
+
|
1009 |
+
# In[58]:
|
1010 |
+
|
1011 |
+
|
1012 |
+
# Do background subtraction
|
1013 |
+
# this uses a df (metadata) outside of
|
1014 |
+
# the scope of the lambda...
|
1015 |
+
# careful that this might break inside of a script...
|
1016 |
+
|
1017 |
+
df.loc[:,~df.columns.isin(not_intensities)] = \
|
1018 |
+
df.loc[:,~df.columns.isin(not_intensities)].apply(lambda column: do_background_sub(column, df, metadata),axis = 0)
|
1019 |
+
|
1020 |
+
|
1021 |
+
# In[59]:
|
1022 |
+
|
1023 |
+
|
1024 |
+
df
|
1025 |
+
background_substraction_df = df
|
1026 |
+
background_substraction_df.head()
|
1027 |
+
|
1028 |
+
|
1029 |
+
# In[60]:
|
1030 |
+
|
1031 |
+
|
1032 |
+
# Drop AF columns
|
1033 |
+
df = df.filter(regex='^(?!AF\d{3}).*')
|
1034 |
+
print(df.columns.values)
|
1035 |
+
|
1036 |
+
|
1037 |
+
# In[61]:
|
1038 |
+
|
1039 |
+
|
1040 |
+
intensities_df = df.loc[:, ~df.columns.isin(not_intensities)]
|
1041 |
+
intensities_df
|
1042 |
+
|
1043 |
+
|
1044 |
+
# In[62]:
|
1045 |
+
|
1046 |
+
|
1047 |
+
normalization_df.head()
|
1048 |
+
|
1049 |
+
|
1050 |
+
# In[63]:
|
1051 |
+
|
1052 |
+
|
1053 |
+
metadata_df = metadata_with_localisation
|
1054 |
+
intensities_df = intensities_df # Assuming you have loaded the intensities DataFrame
|
1055 |
+
|
1056 |
+
# Create a list of column names from the intensities DataFrame
|
1057 |
+
column_names = intensities_df.columns.tolist()
|
1058 |
+
|
1059 |
+
# Create a Select widget for choosing a column
|
1060 |
+
column_selector = pn.widgets.Select(name='Select Column', options=column_names)
|
1061 |
+
|
1062 |
+
# Create a Markdown widget to display the selected column's information
|
1063 |
+
column_info_md = pn.pane.Markdown(name='Column Information', width=400, object='Select a column to view its information.')
|
1064 |
+
|
1065 |
+
# Define a function to update the column information
|
1066 |
+
def update_column_info(event):
|
1067 |
+
selected_column = event.new
|
1068 |
+
if selected_column:
|
1069 |
+
# Get the selected column's intensity
|
1070 |
+
intensity = intensities_df[selected_column].values
|
1071 |
+
|
1072 |
+
# Get the corresponding channel, localization, and experiment from the metadata
|
1073 |
+
channel = metadata_df.loc[metadata_df['full_column'] == selected_column, 'Channel'].values[0]
|
1074 |
+
localization = metadata_df.loc[metadata_df['full_column'] == selected_column, 'localisation'].values[0]
|
1075 |
+
exposure = metadata_df.loc[metadata_df['full_column'] == selected_column, 'Exp'].values[0]
|
1076 |
+
|
1077 |
+
# Create a Markdown string with the column information
|
1078 |
+
column_info_text = f"**Intensity:** {intensity}\n\n**Channel:** {channel}\n\n**Localization:** {localization}\n\n**Exposure:** {exposure}"
|
1079 |
+
|
1080 |
+
# Update the Markdown widget with the column information
|
1081 |
+
column_info_md.object = column_info_text
|
1082 |
+
else:
|
1083 |
+
column_info_md.object = 'Select a column to view its information.'
|
1084 |
+
|
1085 |
+
# Watch for changes in the column selector and update the column information
|
1086 |
+
column_selector.param.watch(update_column_info, 'value')
|
1087 |
+
|
1088 |
+
# Create a Panel app and display the widgets
|
1089 |
+
bs_info = pn.Column(column_selector, column_info_md)
|
1090 |
+
pn.extension()
|
1091 |
+
bs_info.servable()
|
1092 |
+
|
1093 |
+
normalization_df.head()
|
1094 |
+
|
1095 |
+
|
1096 |
+
# In[65]:
|
1097 |
+
|
1098 |
+
|
1099 |
+
import panel as pn
|
1100 |
+
df_widget = pn.widgets.DataFrame(metadata, name="MetaData")
|
1101 |
+
app2 = pn.template.GoldenTemplate(
|
1102 |
+
site="Cyc-IF",
|
1103 |
+
title=" Background-Substraction",
|
1104 |
+
main=[pn.Tabs(("Background-Substraction",pn.Column(
|
1105 |
+
#pn.Column(pn.pane.Markdown("### Celltype thresholds"), pn.pane.DataFrame(celltype_color_df)),
|
1106 |
+
#pn.Column(pn.pane.Markdown("### Cell Subtype thresholds"), pn.pane.DataFrame(cellsubtype_color_df)),
|
1107 |
+
#pn.Column(pn.pane.Markdown("### Cells Before Filtering"),pn.pane.Str(cells_before_filter)),
|
1108 |
+
#pn.Column(pn.pane.Markdown("### Cells After Filtering Nucleus"),pn.pane.Str(cells_after_filter_nucleus)),
|
1109 |
+
#pn.Column(pn.pane.Markdown("### Cells After Filtering Intensity"),pn.pane.Str(cells_after_filter_intensity)),
|
1110 |
+
#pn.Column(pn.pane.Markdown("### Dataframe after filtering"), pn.pane.DataFrame(filtered_dataframe.head())),
|
1111 |
+
pn.Column(pn.pane.Markdown("### The metadata obtained that specifies the localisation:"), metadata_with_localisation.head(8)),
|
1112 |
+
pn.Column(pn.pane.Markdown("### The channels and exposure of each intensities column"), bs_info),
|
1113 |
+
pn.Column(pn.pane.Markdown("### Dataframe after perfroming normalization"),pn.pane.DataFrame(normalization_df.head(), width = 1500)),
|
1114 |
+
pn.Column(pn.pane.Markdown("### Dataframe after background Substraction"), pn.pane.DataFrame(background_substraction_df.head()),
|
1115 |
+
))),
|
1116 |
+
("Quality Control", pn.Column(
|
1117 |
+
quality_check(quality_control_df, not_intensities)
|
1118 |
+
#pn.pane.Markdown("### The Quality check results are:"), quality_check_results(check_shape, check_no_null, check_all_expected_files_present, check_zero_intensities)
|
1119 |
+
))
|
1120 |
+
)],)
|
1121 |
+
app2.servable()
|