Spaces:
Sleeping
Sleeping
Delete Background_Substraction.py
Browse files- Background_Substraction.py +0 -1130
Background_Substraction.py
DELETED
@@ -1,1130 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
|
5 |
-
# In[1]:
|
6 |
-
import os
|
7 |
-
import random
|
8 |
-
import re
|
9 |
-
import pandas as pd
|
10 |
-
import numpy as np
|
11 |
-
import seaborn as sb
|
12 |
-
import matplotlib.pyplot as plt
|
13 |
-
import matplotlib.colors as mplc
|
14 |
-
import subprocess
|
15 |
-
import warnings
|
16 |
-
from scipy import signal
|
17 |
-
import plotly.figure_factory as ff
|
18 |
-
import plotly
|
19 |
-
import plotly.graph_objs as go
|
20 |
-
from plotly.offline import download_plotlyjs, plot
|
21 |
-
import plotly.express as px
|
22 |
-
from my_modules import *
|
23 |
-
os.getcwd()
|
24 |
-
# In[2]:
|
25 |
-
|
26 |
-
|
27 |
-
#Silence FutureWarnings & UserWarnings
|
28 |
-
warnings.filterwarnings('ignore', category= FutureWarning)
|
29 |
-
warnings.filterwarnings('ignore', category= UserWarning)
|
30 |
-
|
31 |
-
|
32 |
-
# ## II.2. *DIRECTORIES
|
33 |
-
|
34 |
-
# In[5]:
|
35 |
-
|
36 |
-
|
37 |
-
# Set base directory
|
38 |
-
|
39 |
-
##### MAC WORKSTATION #####
|
40 |
-
#base_dir = r'/Volumes/LaboLabrie/Projets/OC_TMA_Pejovic/Temp/Zoe/CyCIF_pipeline/'
|
41 |
-
###########################
|
42 |
-
|
43 |
-
##### WINDOWS WORKSTATION #####
|
44 |
-
#base_dir = r'C:\Users\LaboLabrie\gerz2701\cyCIF-pipeline\Set_B'
|
45 |
-
###############################
|
46 |
-
|
47 |
-
##### LOCAL WORKSTATION #####
|
48 |
-
#base_dir = r'/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431/'
|
49 |
-
#############################
|
50 |
-
|
51 |
-
#set_name = 'Set_A'
|
52 |
-
#set_name = 'test'
|
53 |
-
|
54 |
-
|
55 |
-
present_dir = os.path.dirname(os.path.realpath(__file__))
|
56 |
-
|
57 |
-
input_path = os.path.join(present_dir, 'wetransfer_data-zip_2024-05-17_1431')
|
58 |
-
base_dir = input_path
|
59 |
-
'''
|
60 |
-
# Function to change permissions recursively with error handling
|
61 |
-
def change_permissions_recursive(path, mode):
|
62 |
-
for root, dirs, files in os.walk(path):
|
63 |
-
for dir in dirs:
|
64 |
-
try:
|
65 |
-
os.chmod(os.path.join(root, dir), mode)
|
66 |
-
except Exception as e:
|
67 |
-
print(f"An error occurred while changing permissions for directory {os.path.join(root, dir)}: {e}")
|
68 |
-
for file in files:
|
69 |
-
try:
|
70 |
-
os.chmod(os.path.join(root, file), mode)
|
71 |
-
except Exception as e:
|
72 |
-
print(f"An error occurred while changing permissions for file {os.path.join(root, file)}: {e}")
|
73 |
-
|
74 |
-
|
75 |
-
change_permissions_recursive(base_dir, 0o777)
|
76 |
-
change_permissions_recursive('/code', 0o777)
|
77 |
-
'''
|
78 |
-
set_path = 'test'
|
79 |
-
selected_metadata_files = ['Slide_B_DD1s1.one_1.tif.csv', 'Slide_B_DD1s1.one_2.tif.csv']
|
80 |
-
ls_samples = ['Ashlar_Exposure_Time.csv', 'new_data.csv', 'DD3S1.csv', 'DD3S2.csv', 'DD3S3.csv', 'TMA.csv']
|
81 |
-
|
82 |
-
set_name = set_path
|
83 |
-
|
84 |
-
|
85 |
-
# In[7]:
|
86 |
-
|
87 |
-
|
88 |
-
project_name = set_name # Project name
|
89 |
-
step_suffix = 'bs' # Curent part (here part II)
|
90 |
-
previous_step_suffix_long = "_qc_eda" # Previous part (here QC/EDA NOTEBOOK)
|
91 |
-
|
92 |
-
# Initial input data directory
|
93 |
-
input_data_dir = os.path.join(base_dir, project_name + previous_step_suffix_long)
|
94 |
-
|
95 |
-
# BS output directories
|
96 |
-
output_data_dir = os.path.join(base_dir, project_name + "_" + step_suffix)
|
97 |
-
# BS images subdirectory
|
98 |
-
output_images_dir = os.path.join(output_data_dir,"images")
|
99 |
-
|
100 |
-
# Data and Metadata directories
|
101 |
-
# Metadata directories
|
102 |
-
metadata_dir = os.path.join(base_dir, project_name + "_metadata")
|
103 |
-
# images subdirectory
|
104 |
-
metadata_images_dir = os.path.join(metadata_dir,"images")
|
105 |
-
|
106 |
-
# Create directories if they don't already exist
|
107 |
-
for d in [base_dir, input_data_dir, output_data_dir, output_images_dir, metadata_dir, metadata_images_dir]:
|
108 |
-
if not os.path.exists(d):
|
109 |
-
print("Creation of the" , d, "directory...")
|
110 |
-
os.makedirs(d)
|
111 |
-
else :
|
112 |
-
print("The", d, "directory already exists !")
|
113 |
-
|
114 |
-
os.chdir(input_data_dir)
|
115 |
-
|
116 |
-
|
117 |
-
# In[8]:
|
118 |
-
|
119 |
-
|
120 |
-
# Verify paths
|
121 |
-
print('base_dir :', base_dir)
|
122 |
-
print('input_data_dir :', input_data_dir)
|
123 |
-
print('output_data_dir :', output_data_dir)
|
124 |
-
print('output_images_dir :', output_images_dir)
|
125 |
-
print('metadata_dir :', metadata_dir)
|
126 |
-
print('metadata_images_dir :', metadata_images_dir)
|
127 |
-
|
128 |
-
# ## II.3. FILES
|
129 |
-
#Don't forget to put your data in the projname_data directory !
|
130 |
-
# ### II.3.1. METADATA
|
131 |
-
|
132 |
-
# In[9]:
|
133 |
-
|
134 |
-
|
135 |
-
# Import all metadata we need from the QC/EDA chapter
|
136 |
-
|
137 |
-
# METADATA
|
138 |
-
filename = "marker_intensity_metadata.csv"
|
139 |
-
filename = os.path.join(metadata_dir, filename)
|
140 |
-
|
141 |
-
# Check file exists
|
142 |
-
if not os.path.exists(filename):
|
143 |
-
print("WARNING: Could not find desired file: "+filename)
|
144 |
-
else :
|
145 |
-
print("The",filename,"file was imported for further analysis!")
|
146 |
-
|
147 |
-
# Open, read in information
|
148 |
-
metadata = pd.read_csv(filename)
|
149 |
-
|
150 |
-
# Verify size with verify_line_no() function in my_modules.py
|
151 |
-
#verify_line_no(filename, metadata.shape[0] + 1)
|
152 |
-
|
153 |
-
# Verify headers
|
154 |
-
exp_cols = ['Round','Target','Channel','target_lower','full_column','marker','localisation']
|
155 |
-
compare_headers(exp_cols, metadata.columns.values, "Marker metadata file")
|
156 |
-
|
157 |
-
metadata = metadata.dropna()
|
158 |
-
metadata.head()
|
159 |
-
|
160 |
-
# ### II.3.2. NOT_INTENSITIES
|
161 |
-
|
162 |
-
# In[10]:
|
163 |
-
|
164 |
-
|
165 |
-
# NOT_INTENSITIES
|
166 |
-
filename = "not_intensities.csv"
|
167 |
-
filename = os.path.join(metadata_dir, filename)
|
168 |
-
|
169 |
-
# Check file exists
|
170 |
-
if not os.path.exists(filename):
|
171 |
-
print("WARNING: Could not find desired file: "+filename)
|
172 |
-
else :
|
173 |
-
print("The",filename,"file was imported for further analysis!")
|
174 |
-
|
175 |
-
# Open, read in information
|
176 |
-
#not_intensities = []
|
177 |
-
with open(filename, 'r') as fh:
|
178 |
-
not_intensities = fh.read().strip().split("\n")
|
179 |
-
# take str, strip whitespace, split on new line character
|
180 |
-
|
181 |
-
not_intensities = ['Nuc_X', 'Nuc_X_Inv', 'Nuc_Y', 'Nuc_Y_Inv', 'Nucleus_Roundness', 'Nucleus_Size', 'Cell_Size',
|
182 |
-
'ROI_index', 'Sample_ID', 'replicate_ID', 'Cell_ID','cell_type', 'cell_subtype', 'cluster','ID',
|
183 |
-
'Cytoplasm_Size', 'immune_checkpoint', 'Unique_ROI_index', 'Patient', 'Primary_chem(1)_vs_surg(0)']
|
184 |
-
|
185 |
-
# Verify size
|
186 |
-
print("Verifying data read from file is the correct length...\n")
|
187 |
-
verify_line_no(filename, len(not_intensities))
|
188 |
-
|
189 |
-
# Print to console
|
190 |
-
print("not_intensities =\n", not_intensities)
|
191 |
-
|
192 |
-
import os
|
193 |
-
import pandas as pd
|
194 |
-
|
195 |
-
# Function to compare headers (assuming you have this function defined in your my_modules.py)
|
196 |
-
def compare_headers(expected, actual, description):
|
197 |
-
missing = [col for col in expected if col not in actual]
|
198 |
-
if missing:
|
199 |
-
print(f"WARNING: Missing expected columns in {description}: {missing}")
|
200 |
-
else:
|
201 |
-
print(f"All expected columns are present in {description}.")
|
202 |
-
|
203 |
-
# Get the current script directory
|
204 |
-
present_dir = os.path.dirname(os.path.realpath(__file__))
|
205 |
-
|
206 |
-
# Define the input path
|
207 |
-
input_path = os.path.join(present_dir, 'wetransfer_data-zip_2024-05-17_1431')
|
208 |
-
base_dir = input_path
|
209 |
-
set_path = 'test'
|
210 |
-
|
211 |
-
# Project and step names
|
212 |
-
project_name = set_path # Project name
|
213 |
-
previous_step_suffix_long = "_qc_eda" # Previous part (here QC/EDA NOTEBOOK)
|
214 |
-
|
215 |
-
# Initial input data directory
|
216 |
-
input_data_dir = os.path.join(base_dir, project_name + previous_step_suffix_long)
|
217 |
-
|
218 |
-
# Metadata directories
|
219 |
-
metadata_dir = os.path.join(base_dir, project_name + "_metadata")
|
220 |
-
metadata_images_dir = os.path.join(metadata_dir, "images")
|
221 |
-
|
222 |
-
# Define writable directory
|
223 |
-
writable_directory = '/tmp'
|
224 |
-
|
225 |
-
# Check and read metadata file
|
226 |
-
filename = "marker_intensity_metadata.csv"
|
227 |
-
filename = os.path.join(metadata_dir, filename)
|
228 |
-
|
229 |
-
# Check if the file exists
|
230 |
-
if not os.path.exists(filename):
|
231 |
-
print("WARNING: Could not find desired file: " + filename)
|
232 |
-
else:
|
233 |
-
print("The", filename, "file was imported for further analysis!")
|
234 |
-
|
235 |
-
# Open, read in information
|
236 |
-
metadata = pd.read_csv(filename)
|
237 |
-
|
238 |
-
# Verify headers
|
239 |
-
exp_cols = ['Round', 'Target', 'Channel', 'target_lower', 'full_column', 'marker', 'localisation']
|
240 |
-
compare_headers(exp_cols, metadata.columns.values, "Marker metadata file")
|
241 |
-
|
242 |
-
metadata = metadata.dropna()
|
243 |
-
print(metadata.head())
|
244 |
-
|
245 |
-
# Example of writing to the writable directory
|
246 |
-
output_file_path = os.path.join(writable_directory, 'processed_metadata.csv')
|
247 |
-
try:
|
248 |
-
metadata.to_csv(output_file_path, index=False)
|
249 |
-
print(f"Processed metadata written successfully to {output_file_path}")
|
250 |
-
except PermissionError as e:
|
251 |
-
print(f"Permission denied: Unable to write the file at {output_file_path}. Error: {e}")
|
252 |
-
except Exception as e:
|
253 |
-
print(f"An error occurred: {e}")
|
254 |
-
|
255 |
-
# ### II.3.3. FULL_TO_SHORT_COLUMN_NAMES
|
256 |
-
|
257 |
-
# In[11]:
|
258 |
-
|
259 |
-
|
260 |
-
# FULL_TO_SHORT_COLUMN_NAMES
|
261 |
-
filename = "full_to_short_column_names.csv"
|
262 |
-
filename = os.path.join(metadata_dir, filename)
|
263 |
-
|
264 |
-
# Check file exists
|
265 |
-
if not os.path.exists(filename):
|
266 |
-
print("WARNING: Could not find desired file: " + filename)
|
267 |
-
else :
|
268 |
-
print("The",filename,"file was imported for further analysis!")
|
269 |
-
|
270 |
-
# Open, read in information
|
271 |
-
df = pd.read_csv(filename, header = 0)
|
272 |
-
|
273 |
-
# Verify size
|
274 |
-
print("Verifying data read from file is the correct length...\n")
|
275 |
-
#verify_line_no(filename, df.shape[0] + 1)
|
276 |
-
|
277 |
-
# Turn into dictionary
|
278 |
-
full_to_short_names = df.set_index('full_name').T.to_dict('records')[0]
|
279 |
-
|
280 |
-
# Print information
|
281 |
-
print('full_to_short_names =\n',full_to_short_names)
|
282 |
-
|
283 |
-
|
284 |
-
# ### II.3.4. SHORT_TO_FULL_COLUMN_NAMES
|
285 |
-
|
286 |
-
# In[12]:
|
287 |
-
|
288 |
-
|
289 |
-
# SHORT_TO_FULL_COLUMN_NAMES
|
290 |
-
filename = "short_to_full_column_names.csv"
|
291 |
-
filename = os.path.join(metadata_dir, filename)
|
292 |
-
|
293 |
-
# Check file exists
|
294 |
-
if not os.path.exists(filename):
|
295 |
-
print("WARNING: Could not find desired file: " + filename)
|
296 |
-
else :
|
297 |
-
print("The",filename,"file was imported for further analysis!")
|
298 |
-
|
299 |
-
# Open, read in information
|
300 |
-
df = pd.read_csv(filename, header = 0)
|
301 |
-
|
302 |
-
# Verify size
|
303 |
-
print("Verifying data read from file is the correct length...\n")
|
304 |
-
#verify_line_no(filename, df.shape[0] + 1)
|
305 |
-
|
306 |
-
# Turn into dictionary
|
307 |
-
short_to_full_names = df.set_index('short_name').T.to_dict('records')[0]
|
308 |
-
|
309 |
-
# Print information
|
310 |
-
print('short_to_full_names =\n',short_to_full_names)
|
311 |
-
|
312 |
-
|
313 |
-
# ### II.3.5. SAMPLES COLORS
|
314 |
-
|
315 |
-
# In[13]:
|
316 |
-
|
317 |
-
|
318 |
-
# COLORS INFORMATION
|
319 |
-
filename = "sample_color_data.csv"
|
320 |
-
filename = os.path.join(metadata_dir, filename)
|
321 |
-
|
322 |
-
# Check file exists
|
323 |
-
if not os.path.exists(filename):
|
324 |
-
print("WARNING: Could not find desired file: " + filename)
|
325 |
-
else :
|
326 |
-
print("The",filename,"file was imported for further analysis!")
|
327 |
-
|
328 |
-
# Open, read in information
|
329 |
-
df = pd.read_csv(filename, header = 0)
|
330 |
-
df = df.drop(columns = ['hex'])
|
331 |
-
|
332 |
-
|
333 |
-
# our tuple of float values for rgb, (r, g, b) was read in
|
334 |
-
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
335 |
-
# substrings and convert them back into floats
|
336 |
-
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
337 |
-
|
338 |
-
# Verify size
|
339 |
-
print("Verifying data read from file is the correct length...\n")
|
340 |
-
#verify_line_no(filename, df.shape[0] + 1)
|
341 |
-
|
342 |
-
# Turn into dictionary
|
343 |
-
sample_color_dict = df.set_index('Sample_ID')['rgb'].to_dict()
|
344 |
-
|
345 |
-
# Print information
|
346 |
-
print('sample_color_dict =\n',sample_color_dict)
|
347 |
-
sample_color_dict = pd.DataFrame.from_dict(sample_color_dict, orient='index', columns=['R', 'G', 'B'])
|
348 |
-
|
349 |
-
|
350 |
-
# In[14]:
|
351 |
-
|
352 |
-
|
353 |
-
sample_color_dict
|
354 |
-
|
355 |
-
|
356 |
-
# ### II.3.6. CHANNELS COLORS
|
357 |
-
|
358 |
-
# In[15]:
|
359 |
-
|
360 |
-
|
361 |
-
# CHANNELS
|
362 |
-
filename = "channel_color_data.csv"
|
363 |
-
filename = os.path.join(metadata_dir, filename)
|
364 |
-
|
365 |
-
# Check file exists
|
366 |
-
if not os.path.exists(filename):
|
367 |
-
print("WARNING: Could not find desired file: "+filename)
|
368 |
-
else :
|
369 |
-
print("The",filename,"file was imported for further analysis!")
|
370 |
-
|
371 |
-
# Open, read in information
|
372 |
-
df = pd.read_csv(filename, header = 0)
|
373 |
-
df = df.drop(columns = ['hex'])
|
374 |
-
|
375 |
-
# our tuple of float values for rgb, (r, g, b) was read in
|
376 |
-
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
377 |
-
# substrings and convert them back into floats
|
378 |
-
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
379 |
-
|
380 |
-
# Verify size
|
381 |
-
print("Verifying data read from file is the correct length...\n")
|
382 |
-
#verify_line_no(filename, df.shape[0] + 1)
|
383 |
-
|
384 |
-
# Turn into dictionary
|
385 |
-
channel_color_dict = df.set_index('Channel')['rgb'].to_dict()
|
386 |
-
|
387 |
-
# Print information
|
388 |
-
print('channel_color_dict =\n',channel_color_dict)
|
389 |
-
channel_color_dict = pd.DataFrame.from_dict(channel_color_dict, orient='index', columns=['R', 'G', 'B'])
|
390 |
-
|
391 |
-
|
392 |
-
# In[16]:
|
393 |
-
|
394 |
-
|
395 |
-
channel_color_dict
|
396 |
-
|
397 |
-
|
398 |
-
# ### II.3.7. ROUNDS COLORS
|
399 |
-
|
400 |
-
# In[17]:
|
401 |
-
|
402 |
-
|
403 |
-
# ROUND
|
404 |
-
filename = "round_color_data.csv"
|
405 |
-
filename = os.path.join(metadata_dir, filename)
|
406 |
-
|
407 |
-
# Check file exists
|
408 |
-
if not os.path.exists(filename):
|
409 |
-
print("WARNING: Could not find desired file: "+filename)
|
410 |
-
else :
|
411 |
-
print("The",filename,"file was imported for further analysis!")
|
412 |
-
|
413 |
-
# Open, read in information
|
414 |
-
df = pd.read_csv(filename, header = 0)
|
415 |
-
df = df.drop(columns = ['hex'])
|
416 |
-
|
417 |
-
# our tuple of float values for rgb, (r, g, b) was read in
|
418 |
-
# as a string '(r, g, b)'. We need to extract the r-, g-, and b-
|
419 |
-
# substrings and convert them back into floats
|
420 |
-
df['rgb'] = df.apply(lambda row: rgb_tuple_from_str(row['rgb']), axis = 1)
|
421 |
-
|
422 |
-
# Verify size
|
423 |
-
print("Verifying data read from file is the correct length...\n")
|
424 |
-
#verify_line_no(filename, df.shape[0] + 1)
|
425 |
-
|
426 |
-
# Turn into dictionary
|
427 |
-
round_color_dict = df.set_index('Round')['rgb'].to_dict()
|
428 |
-
|
429 |
-
# Print information
|
430 |
-
print('round_color_dict =\n',round_color_dict)
|
431 |
-
round_color_dict = pd.DataFrame.from_dict(round_color_dict, orient='index', columns=['R', 'G', 'B'])
|
432 |
-
|
433 |
-
|
434 |
-
# In[18]:
|
435 |
-
|
436 |
-
|
437 |
-
round_color_dict
|
438 |
-
|
439 |
-
|
440 |
-
# ### II.3.8. DATA
|
441 |
-
|
442 |
-
# In[19]:
|
443 |
-
|
444 |
-
|
445 |
-
# DATA
|
446 |
-
# List files in the directory
|
447 |
-
# Check if the directory exists
|
448 |
-
if os.path.exists(input_data_dir):
|
449 |
-
ls_samples = [sample for sample in os.listdir(input_data_dir) if sample.endswith("_qc_eda.csv")]
|
450 |
-
|
451 |
-
print("The following CSV files were detected:")
|
452 |
-
print([sample for sample in ls_samples])
|
453 |
-
else:
|
454 |
-
print(f"The directory {input_data_dir} does not exist.")
|
455 |
-
|
456 |
-
|
457 |
-
# In[20]:
|
458 |
-
|
459 |
-
|
460 |
-
# Import all the others files
|
461 |
-
dfs = {}
|
462 |
-
|
463 |
-
# Set variable to hold default header values
|
464 |
-
# First gather information on expected headers using first file in ls_samples
|
465 |
-
# Read in the first row of the file corresponding to the first sample (index = 0) in ls_samples
|
466 |
-
df = pd.read_csv(os.path.join(input_data_dir, ls_samples[0]) , index_col = 0, nrows = 1)
|
467 |
-
expected_headers = df.columns.values
|
468 |
-
print(expected_headers)
|
469 |
-
|
470 |
-
###############################
|
471 |
-
# !! This may take a while !! #
|
472 |
-
###############################
|
473 |
-
for sample in ls_samples:
|
474 |
-
file_path = os.path.join(input_data_dir,sample)
|
475 |
-
|
476 |
-
try:
|
477 |
-
# Read the CSV file
|
478 |
-
df = pd.read_csv(file_path, index_col=0)
|
479 |
-
# Check if the DataFrame is empty, if so, don't continue trying to process df and remove it
|
480 |
-
|
481 |
-
if not df.empty:
|
482 |
-
# Reorder the columns to match the expected headers list
|
483 |
-
df = df.reindex(columns=expected_headers)
|
484 |
-
print(sample, "file is processed !\n")
|
485 |
-
#print(df)
|
486 |
-
|
487 |
-
except pd.errors.EmptyDataError:
|
488 |
-
print(f'\nEmpty data error in {sample} file. Removing from analysis...')
|
489 |
-
ls_samples.remove(sample)
|
490 |
-
|
491 |
-
# Add df to dfs
|
492 |
-
dfs[sample] = df
|
493 |
-
|
494 |
-
#print(dfs)
|
495 |
-
|
496 |
-
|
497 |
-
# In[21]:
|
498 |
-
|
499 |
-
|
500 |
-
# Merge dfs into one df
|
501 |
-
df = pd.concat(dfs.values(), ignore_index=False , sort = False)
|
502 |
-
#del dfs
|
503 |
-
df.head()
|
504 |
-
|
505 |
-
|
506 |
-
# In[22]:
|
507 |
-
|
508 |
-
|
509 |
-
df.shape
|
510 |
-
|
511 |
-
|
512 |
-
# In[23]:
|
513 |
-
|
514 |
-
|
515 |
-
# Check for NaN entries (should not be any unless columns do not align)
|
516 |
-
# False means no NaN entries
|
517 |
-
# True means NaN entries
|
518 |
-
df.isnull().any().any()
|
519 |
-
|
520 |
-
|
521 |
-
# ## II.4. *FILTERING
|
522 |
-
|
523 |
-
# In[24]:
|
524 |
-
|
525 |
-
|
526 |
-
print("Number of cells before filtering :", df.shape[0])
|
527 |
-
cells_before_filter = f"Number of cells before filtering :{df.shape[0]}"
|
528 |
-
|
529 |
-
|
530 |
-
# In[25]:
|
531 |
-
|
532 |
-
|
533 |
-
#print(df)
|
534 |
-
|
535 |
-
|
536 |
-
# In[26]:
|
537 |
-
|
538 |
-
|
539 |
-
# Delete small cells and objects w/high AF555 Signal (RBCs)
|
540 |
-
# We usually use the 95th percentile calculated during QC_EDA
|
541 |
-
df = df.loc[(df['Nucleus_Size'] > 42 )]
|
542 |
-
df = df.loc[(df['Nucleus_Size'] < 216)]
|
543 |
-
print("Number of cells after filtering on nucleus size:", df.shape[0])
|
544 |
-
|
545 |
-
df = df.loc[(df['AF555_Cell_Intensity_Average'] < 2000)]
|
546 |
-
print("Number of cells after filtering on AF555A ___ intensity:", df.shape[0])
|
547 |
-
cells_after_filter_nucleus = f"Number of cells after filtering on nucleus size: {df.shape[0]}"
|
548 |
-
cells_after_filter_intensity = f"Number of cells after filtering on AF555A ___ intensity: {df.shape[0]}"
|
549 |
-
|
550 |
-
|
551 |
-
# In[27]:
|
552 |
-
|
553 |
-
|
554 |
-
# Assign cell type
|
555 |
-
# Assign tumor cells at each row at first (random assigning here just for development purposes)
|
556 |
-
# Generate random values for cell_type column
|
557 |
-
random_values = np.random.randint(0, 10, size=len(df))
|
558 |
-
|
559 |
-
# Assign cell type based on random values
|
560 |
-
def assign_cell_type(n):
|
561 |
-
return np.random.choice(['STROMA','CANCER','IMMUNE','ENDOTHELIAL'])
|
562 |
-
|
563 |
-
df['cell_type'] = np.vectorize(assign_cell_type)(random_values)
|
564 |
-
df['cell_subtype'] = df['cell_type'].copy()
|
565 |
-
|
566 |
-
|
567 |
-
# In[28]:
|
568 |
-
|
569 |
-
|
570 |
-
filtered_dataframe = df
|
571 |
-
df.head()
|
572 |
-
|
573 |
-
|
574 |
-
# In[29]:
|
575 |
-
|
576 |
-
|
577 |
-
quality_control_df = filtered_dataframe
|
578 |
-
|
579 |
-
|
580 |
-
# In[30]:
|
581 |
-
|
582 |
-
|
583 |
-
def check_index_format(index_str, ls_samples):
|
584 |
-
"""
|
585 |
-
Checks if the given index string follows the specified format.
|
586 |
-
|
587 |
-
Args:
|
588 |
-
index_str (str): The index string to be checked.
|
589 |
-
ls_samples (list): A list of valid sample names.
|
590 |
-
|
591 |
-
Returns:
|
592 |
-
bool: True if the index string follows the format, False otherwise.
|
593 |
-
"""
|
594 |
-
# Split the index string into parts
|
595 |
-
parts = index_str.split('_')
|
596 |
-
|
597 |
-
# Check if there are exactly 3 parts
|
598 |
-
if len(parts) != 3:
|
599 |
-
print(len(parts))
|
600 |
-
return False
|
601 |
-
|
602 |
-
# Check if the first part is in ls_samples
|
603 |
-
sample_name = parts[0]
|
604 |
-
if f'{sample_name}_qc_eda.csv' not in ls_samples:
|
605 |
-
print(sample_name)
|
606 |
-
return False
|
607 |
-
|
608 |
-
# Check if the second part is in ['cell', 'cytoplasm', 'nucleus']
|
609 |
-
location = parts[1]
|
610 |
-
valid_locations = ['Cell', 'Cytoplasm', 'Nucleus']
|
611 |
-
if location not in valid_locations:
|
612 |
-
print(location)
|
613 |
-
return False
|
614 |
-
|
615 |
-
# Check if the third part is a number
|
616 |
-
try:
|
617 |
-
index = int(parts[2])
|
618 |
-
except ValueError:
|
619 |
-
print(index)
|
620 |
-
return False
|
621 |
-
|
622 |
-
# If all checks pass, return True
|
623 |
-
return True
|
624 |
-
|
625 |
-
|
626 |
-
# In[31]:
|
627 |
-
|
628 |
-
|
629 |
-
# Let's take a look at a few features to make sure our dataframe is as expected
|
630 |
-
df.index
|
631 |
-
def check_format_ofindex(index):
|
632 |
-
for index in df.index:
|
633 |
-
check_index = check_index_format(index, ls_samples)
|
634 |
-
if check_index is False:
|
635 |
-
index_format = "Bad"
|
636 |
-
return index_format
|
637 |
-
|
638 |
-
index_format = "Good"
|
639 |
-
return index_format
|
640 |
-
print(check_format_ofindex(df.index))
|
641 |
-
|
642 |
-
|
643 |
-
# In[32]:
|
644 |
-
|
645 |
-
|
646 |
-
import panel as pn
|
647 |
-
import pandas as pd
|
648 |
-
|
649 |
-
def quality_check(file, not_intensities):
|
650 |
-
# Load the output file
|
651 |
-
df = file
|
652 |
-
|
653 |
-
# Check Index
|
654 |
-
check_index = check_format_ofindex(df.index)
|
655 |
-
|
656 |
-
# Check Shape
|
657 |
-
check_shape = df.shape
|
658 |
-
|
659 |
-
# Check for NaN entries
|
660 |
-
check_no_null = df.isnull().any().any()
|
661 |
-
|
662 |
-
mean_intensity = df.loc[:, ~df.columns.isin(not_intensities)].mean(axis=1)
|
663 |
-
if (mean_intensity == 0).any():
|
664 |
-
df = df.loc[mean_intensity > 0, :]
|
665 |
-
print("df.shape after removing 0 mean values: ", df.shape)
|
666 |
-
check_zero_intensities = f'Shape after removing 0 mean values: {df.shape}'
|
667 |
-
else:
|
668 |
-
print("No zero intensity values.")
|
669 |
-
check_zero_intensities = "No zero intensity values."
|
670 |
-
|
671 |
-
# Create a quality check results table
|
672 |
-
quality_check_results_table = pd.DataFrame({
|
673 |
-
'Check': ['Index', 'Shape', 'Check for NaN Entries', 'Check for Zero Intensities'],
|
674 |
-
'Result': [str(check_index), str(check_shape), str(check_no_null), check_zero_intensities]
|
675 |
-
})
|
676 |
-
|
677 |
-
# Create a quality check results component
|
678 |
-
quality_check_results_component = pn.Card(
|
679 |
-
pn.pane.DataFrame(quality_check_results_table),
|
680 |
-
title="Quality Control Results",
|
681 |
-
header_background="#2196f3",
|
682 |
-
header_color="white",
|
683 |
-
)
|
684 |
-
|
685 |
-
return quality_check_results_component
|
686 |
-
|
687 |
-
|
688 |
-
# ## II.5. CELL TYPES COLORS
|
689 |
-
# Establish colors to use throughout workflow
|
690 |
-
|
691 |
-
# we want colors that are categorical, since Cell Type is a non-ordered category.
|
692 |
-
# A categorical color palette will have dissimilar colors.
|
693 |
-
# Get those unique colors
|
694 |
-
cell_types = ['STROMA','CANCER','IMMUNE','ENDOTHELIAL']
|
695 |
-
color_values = sb.color_palette("hls", n_colors = len(cell_types))
|
696 |
-
# each color value is a tuple of three values: (R, G, B)
|
697 |
-
|
698 |
-
print("Unique cell types are:",df.cell_type.unique())
|
699 |
-
# Display those unique colors
|
700 |
-
sb.palplot(sb.color_palette(color_values))
|
701 |
-
# In[33]:
|
702 |
-
|
703 |
-
|
704 |
-
# Define your custom colors for each cell type
|
705 |
-
custom_colors = {
|
706 |
-
'CANCER': (0.1333, 0.5451, 0.1333),
|
707 |
-
'STROMA': (0.4, 0.4, 0.4),
|
708 |
-
'IMMUNE': (1, 1, 0),
|
709 |
-
'ENDOTHELIAL': (0.502, 0, 0.502)
|
710 |
-
}
|
711 |
-
|
712 |
-
# Retrieve the list of cell types
|
713 |
-
cell_types = list(custom_colors.keys())
|
714 |
-
|
715 |
-
# Extract the corresponding colors from the dictionary
|
716 |
-
color_values = [custom_colors[cell] for cell in cell_types]
|
717 |
-
|
718 |
-
# Display the colors
|
719 |
-
sb.palplot(sb.color_palette(color_values))
|
720 |
-
|
721 |
-
|
722 |
-
# In[34]:
|
723 |
-
|
724 |
-
|
725 |
-
# Store in a dctionnary
|
726 |
-
celltype_color_dict = dict(zip(cell_types, color_values))
|
727 |
-
celltype_color_dict
|
728 |
-
|
729 |
-
|
730 |
-
# In[35]:
|
731 |
-
|
732 |
-
|
733 |
-
celltype_color_df = pd.DataFrame.from_dict(celltype_color_dict, orient='index', columns=['R', 'G', 'B'])
|
734 |
-
|
735 |
-
|
736 |
-
# In[36]:
|
737 |
-
|
738 |
-
|
739 |
-
# Save color information (mapping and legend) to metadata directory
|
740 |
-
# Create dataframe
|
741 |
-
celltype_color_df = color_dict_to_df(celltype_color_dict, "cell_type")
|
742 |
-
celltype_color_df.head()
|
743 |
-
|
744 |
-
# Save to file in metadatadirectory
|
745 |
-
present_dir = os.path.dirname(os.path.realpath(__file__))
|
746 |
-
filename = os.path.join(present_dir, "celltype_color_data.csv")
|
747 |
-
#filename = "celltype_color_data.csv"
|
748 |
-
filename = os.path.join(metadata_dir, filename)
|
749 |
-
celltype_color_df.to_csv(filename, index = False)
|
750 |
-
print("File" + filename + " was created!")
|
751 |
-
|
752 |
-
|
753 |
-
# In[37]:
|
754 |
-
|
755 |
-
|
756 |
-
celltype_color_df.head()
|
757 |
-
|
758 |
-
|
759 |
-
# In[38]:
|
760 |
-
|
761 |
-
|
762 |
-
# Legend of cell type info only
|
763 |
-
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
764 |
-
g.axis('off')
|
765 |
-
handles = []
|
766 |
-
for item in celltype_color_dict.keys():
|
767 |
-
h = g.bar(0,0, color = celltype_color_dict[item],
|
768 |
-
label = item, linewidth =0)
|
769 |
-
handles.append(h)
|
770 |
-
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Cell type'),
|
771 |
-
|
772 |
-
|
773 |
-
filename = "Celltype_legend.png"
|
774 |
-
filename = os.path.join(metadata_images_dir, filename)
|
775 |
-
plt.savefig(filename, bbox_inches = 'tight')
|
776 |
-
|
777 |
-
|
778 |
-
# In[39]:
|
779 |
-
|
780 |
-
|
781 |
-
metadata
|
782 |
-
|
783 |
-
|
784 |
-
# In[40]:
|
785 |
-
|
786 |
-
|
787 |
-
df.columns.values
|
788 |
-
|
789 |
-
|
790 |
-
# In[41]:
|
791 |
-
|
792 |
-
|
793 |
-
df.shape
|
794 |
-
|
795 |
-
|
796 |
-
# In[42]:
|
797 |
-
|
798 |
-
|
799 |
-
metadata.shape
|
800 |
-
|
801 |
-
|
802 |
-
# ## II.6. *CELL SUBTYPES COLORS
|
803 |
-
|
804 |
-
# In[43]:
|
805 |
-
|
806 |
-
|
807 |
-
# Establish colors to use throughout workflow
|
808 |
-
|
809 |
-
# we want colors that are categorical, since Cell Type is a non-ordered category.
|
810 |
-
# A categorical color palette will have dissimilar colors.
|
811 |
-
# Get those unique colors
|
812 |
-
cell_subtypes = ['DC','B', 'TCD4','TCD8','M1','M2','Treg', \
|
813 |
-
'IMMUNE_OTHER', 'CANCER', 'αSMA_myCAF',\
|
814 |
-
'STROMA_OTHER', 'ENDOTHELIAL']
|
815 |
-
color_values = sb.color_palette("Paired",n_colors = len(cell_subtypes))
|
816 |
-
# each color value is a tuple of three values: (R, G, B)
|
817 |
-
|
818 |
-
print("Unique cell types are:",df.cell_subtype.unique())
|
819 |
-
# Display those unique colors
|
820 |
-
sb.palplot(sb.color_palette(color_values))
|
821 |
-
|
822 |
-
|
823 |
-
# In[44]:
|
824 |
-
|
825 |
-
|
826 |
-
# Store in a dctionnary
|
827 |
-
cellsubtype_color_dict = dict(zip(cell_subtypes, color_values))
|
828 |
-
cellsubtype_color_dict
|
829 |
-
|
830 |
-
|
831 |
-
# In[45]:
|
832 |
-
|
833 |
-
|
834 |
-
cellsubtype_color_df = pd.DataFrame.from_dict(cellsubtype_color_dict, orient='index', columns=['R', 'G', 'B'])
|
835 |
-
|
836 |
-
|
837 |
-
# In[46]:
|
838 |
-
|
839 |
-
|
840 |
-
# Save color information (mapping and legend) to metadata directory
|
841 |
-
# Create dataframe
|
842 |
-
cellsubtype_color_df = color_dict_to_df(cellsubtype_color_dict, "cell_subtype")
|
843 |
-
|
844 |
-
# Save to file in metadatadirectory
|
845 |
-
filename = "cellsubtype_color_data.csv"
|
846 |
-
filename = os.path.join(metadata_dir, filename)
|
847 |
-
cellsubtype_color_df.to_csv(filename, index = False)
|
848 |
-
print("File" + filename + " was created!")
|
849 |
-
|
850 |
-
|
851 |
-
# In[47]:
|
852 |
-
|
853 |
-
|
854 |
-
cellsubtype_color_df.head()
|
855 |
-
|
856 |
-
|
857 |
-
# In[48]:
|
858 |
-
|
859 |
-
|
860 |
-
# Legend of cell type info only
|
861 |
-
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
862 |
-
g.axis('off')
|
863 |
-
handles = []
|
864 |
-
for item in cellsubtype_color_dict.keys():
|
865 |
-
h = g.bar(0,0, color = cellsubtype_color_dict[item],
|
866 |
-
label = item, linewidth =0)
|
867 |
-
handles.append(h)
|
868 |
-
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Cell subtype'),
|
869 |
-
|
870 |
-
|
871 |
-
filename = "Cellsubtype_legend.png"
|
872 |
-
filename = os.path.join(metadata_images_dir, filename)
|
873 |
-
plt.savefig(filename, bbox_inches = 'tight')
|
874 |
-
|
875 |
-
|
876 |
-
# ## II.7. IMMUNE CHECKPOINT COLORS
|
877 |
-
|
878 |
-
# In[49]:
|
879 |
-
|
880 |
-
|
881 |
-
# Assign IMMUNE SUBTYPES
|
882 |
-
df['cell_subtype'] = df['cell_type'].copy()
|
883 |
-
df['immune_checkpoint'] = 'none'
|
884 |
-
df
|
885 |
-
|
886 |
-
immune_checkpoint = ['B7H4', 'PDL1', 'PD1', 'None']
|
887 |
-
color_values = sb.color_palette("husl",n_colors=len(immune_checkpoint))
|
888 |
-
# each color value is a tuple of three values: (R, G, B)
|
889 |
-
|
890 |
-
print("Unique immune checkpoint are:",df.immune_checkpoint.unique())
|
891 |
-
# Display those unique colors
|
892 |
-
sb.palplot(sb.color_palette(color_values))
|
893 |
-
# In[50]:
|
894 |
-
|
895 |
-
|
896 |
-
immune_checkpoint = ['B7H4', 'PDL1', 'PD1', 'B7H4_PDL1', 'None']
|
897 |
-
|
898 |
-
# Base colors for the primary checkpoints
|
899 |
-
base_colors = sb.color_palette("husl", n_colors=3) # Three distinct colors
|
900 |
-
|
901 |
-
# Function to mix two RGB colors
|
902 |
-
def mix_colors(color1, color2):
|
903 |
-
return tuple((c1 + c2) / 2 for c1, c2 in zip(color1, color2))
|
904 |
-
|
905 |
-
# Generate mixed colors for the combinations of checkpoints
|
906 |
-
mixed_colors = [
|
907 |
-
mix_colors(base_colors[0], base_colors[1]), # Mix B7H4 and PDL1
|
908 |
-
# mix_colors(base_colors[0], base_colors[2]), # Mix B7H4 and PD1
|
909 |
-
# mix_colors(base_colors[1], base_colors[2]), # Mix PDL1 and PD1
|
910 |
-
tuple(np.mean(base_colors, axis=0)) # Mix B7H4, PDL1, and PD1
|
911 |
-
]
|
912 |
-
|
913 |
-
# Adding the color for 'None'
|
914 |
-
#none_color = [(0.8, 0.8, 0.8)] # A shade of gray
|
915 |
-
|
916 |
-
# Combine all colors into one list
|
917 |
-
color_values = base_colors + mixed_colors #+ none_color
|
918 |
-
|
919 |
-
# Display unique immune checkpoint combinations
|
920 |
-
print("Unique immune checkpoint combinations are:", immune_checkpoint)
|
921 |
-
# Display the unique colors
|
922 |
-
sb.palplot(color_values)
|
923 |
-
|
924 |
-
|
925 |
-
# In[51]:
|
926 |
-
|
927 |
-
|
928 |
-
# Store in a dctionnary
|
929 |
-
immunecheckpoint_color_dict = dict(zip(immune_checkpoint, color_values))
|
930 |
-
immunecheckpoint_color_dict
|
931 |
-
|
932 |
-
|
933 |
-
# In[52]:
|
934 |
-
|
935 |
-
|
936 |
-
# Save color information (mapping and legend) to metadata directory
|
937 |
-
# Create dataframe
|
938 |
-
immunecheckpoint_color_df = color_dict_to_df(immunecheckpoint_color_dict, "immune_checkpoint")
|
939 |
-
immunecheckpoint_color_df.head()
|
940 |
-
|
941 |
-
# Save to file in metadatadirectory
|
942 |
-
filename = "immunecheckpoint_color_data.csv"
|
943 |
-
filename = os.path.join(metadata_dir, filename)
|
944 |
-
immunecheckpoint_color_df.to_csv(filename, index = False)
|
945 |
-
print("File " + filename + " was created!")
|
946 |
-
|
947 |
-
|
948 |
-
# In[53]:
|
949 |
-
|
950 |
-
|
951 |
-
# Legend of cell type info only
|
952 |
-
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
953 |
-
g.axis('off')
|
954 |
-
handles = []
|
955 |
-
for item in immunecheckpoint_color_dict.keys():
|
956 |
-
h = g.bar(0,0, color = immunecheckpoint_color_dict[item],
|
957 |
-
label = item, linewidth =0)
|
958 |
-
handles.append(h)
|
959 |
-
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Immune checkpoint'),
|
960 |
-
|
961 |
-
|
962 |
-
filename = "Cellsubtype_legend.png"
|
963 |
-
filename = os.path.join(metadata_images_dir, filename)
|
964 |
-
plt.savefig(filename, bbox_inches = 'tight')
|
965 |
-
|
966 |
-
|
967 |
-
# ## II.7. BACKGROUND SUBSTRACTION
|
968 |
-
|
969 |
-
# In[54]:
|
970 |
-
|
971 |
-
|
972 |
-
def do_background_sub(col, df, metadata):
|
973 |
-
#print(col.name)
|
974 |
-
location = metadata.loc[metadata['full_column'] == col.name, 'localisation'].values[0]
|
975 |
-
#print('location = ' + location)
|
976 |
-
channel = metadata.loc[metadata['full_column'] == col.name, 'Channel'].values[0]
|
977 |
-
#print('channel = ' + channel)
|
978 |
-
af_target = metadata.loc[
|
979 |
-
(metadata['Channel']==channel) \
|
980 |
-
& (metadata['localisation']==location) \
|
981 |
-
& (metadata['target_lower'].str.contains(r'^af\d{3}$')),\
|
982 |
-
'full_column'].values[0]
|
983 |
-
return col - df.loc[:,af_target]
|
984 |
-
|
985 |
-
|
986 |
-
# In[55]:
|
987 |
-
|
988 |
-
|
989 |
-
metadata_with_localisation = metadata
|
990 |
-
metadata_with_localisation
|
991 |
-
|
992 |
-
|
993 |
-
# In[56]:
|
994 |
-
|
995 |
-
|
996 |
-
#Normalization
|
997 |
-
|
998 |
-
df.loc[:, ~df.columns.isin(not_intensities)] = \
|
999 |
-
df.loc[:, ~df.columns.isin(not_intensities)].apply(lambda column: divide_exp_time(column, 'Exp', metadata), axis = 0)
|
1000 |
-
|
1001 |
-
|
1002 |
-
# In[57]:
|
1003 |
-
|
1004 |
-
|
1005 |
-
normalization_df = df
|
1006 |
-
normalization_df.head()
|
1007 |
-
|
1008 |
-
|
1009 |
-
# In[58]:
|
1010 |
-
|
1011 |
-
|
1012 |
-
# Do background subtraction
|
1013 |
-
# this uses a df (metadata) outside of
|
1014 |
-
# the scope of the lambda...
|
1015 |
-
# careful that this might break inside of a script...
|
1016 |
-
|
1017 |
-
df.loc[:,~df.columns.isin(not_intensities)] = \
|
1018 |
-
df.loc[:,~df.columns.isin(not_intensities)].apply(lambda column: do_background_sub(column, df, metadata),axis = 0)
|
1019 |
-
|
1020 |
-
|
1021 |
-
# In[59]:
|
1022 |
-
|
1023 |
-
|
1024 |
-
df
|
1025 |
-
background_substraction_df = df
|
1026 |
-
background_substraction_df.head()
|
1027 |
-
|
1028 |
-
|
1029 |
-
# In[60]:
|
1030 |
-
|
1031 |
-
|
1032 |
-
# Drop AF columns
|
1033 |
-
df = df.filter(regex='^(?!AF\d{3}).*')
|
1034 |
-
print(df.columns.values)
|
1035 |
-
|
1036 |
-
|
1037 |
-
# In[61]:
|
1038 |
-
|
1039 |
-
|
1040 |
-
intensities_df = df.loc[:, ~df.columns.isin(not_intensities)]
|
1041 |
-
intensities_df
|
1042 |
-
|
1043 |
-
|
1044 |
-
# In[62]:
|
1045 |
-
|
1046 |
-
|
1047 |
-
normalization_df.head()
|
1048 |
-
|
1049 |
-
|
1050 |
-
# In[63]:
|
1051 |
-
|
1052 |
-
|
1053 |
-
metadata_df = metadata_with_localisation
|
1054 |
-
intensities_df = intensities_df # Assuming you have loaded the intensities DataFrame
|
1055 |
-
|
1056 |
-
# Create a list of column names from the intensities DataFrame
|
1057 |
-
column_names = intensities_df.columns.tolist()
|
1058 |
-
|
1059 |
-
# Create a Select widget for choosing a column
|
1060 |
-
column_selector = pn.widgets.Select(name='Select Column', options=column_names)
|
1061 |
-
|
1062 |
-
# Create a Markdown widget to display the selected column's information
|
1063 |
-
column_info_md = pn.pane.Markdown(name='Column Information', width=400, object='Select a column to view its information.')
|
1064 |
-
|
1065 |
-
# Define a function to update the column information
|
1066 |
-
def update_column_info(event):
|
1067 |
-
selected_column = event.new
|
1068 |
-
if selected_column:
|
1069 |
-
# Get the selected column's intensity
|
1070 |
-
intensity = intensities_df[selected_column].values
|
1071 |
-
|
1072 |
-
# Get the corresponding channel, localization, and experiment from the metadata
|
1073 |
-
channel = metadata_df.loc[metadata_df['full_column'] == selected_column, 'Channel'].values[0]
|
1074 |
-
localization = metadata_df.loc[metadata_df['full_column'] == selected_column, 'localisation'].values[0]
|
1075 |
-
exposure = metadata_df.loc[metadata_df['full_column'] == selected_column, 'Exp'].values[0]
|
1076 |
-
|
1077 |
-
# Create a Markdown string with the column information
|
1078 |
-
column_info_text = f"**Intensity:** {intensity}\n\n**Channel:** {channel}\n\n**Localization:** {localization}\n\n**Exposure:** {exposure}"
|
1079 |
-
|
1080 |
-
# Update the Markdown widget with the column information
|
1081 |
-
column_info_md.object = column_info_text
|
1082 |
-
else:
|
1083 |
-
column_info_md.object = 'Select a column to view its information.'
|
1084 |
-
|
1085 |
-
# Watch for changes in the column selector and update the column information
|
1086 |
-
column_selector.param.watch(update_column_info, 'value')
|
1087 |
-
|
1088 |
-
# Create a Panel app and display the widgets
|
1089 |
-
bs_info = pn.Column(column_selector, column_info_md)
|
1090 |
-
pn.extension()
|
1091 |
-
bs_info.servable()
|
1092 |
-
|
1093 |
-
|
1094 |
-
# In[64]:
|
1095 |
-
|
1096 |
-
|
1097 |
-
normalization_df.head()
|
1098 |
-
|
1099 |
-
|
1100 |
-
# In[65]:
|
1101 |
-
|
1102 |
-
|
1103 |
-
import panel as pn
|
1104 |
-
df_widget = pn.widgets.DataFrame(metadata, name="MetaData")
|
1105 |
-
app2 = pn.template.GoldenTemplate(
|
1106 |
-
site="Cyc-IF",
|
1107 |
-
title=" Background-Substraction",
|
1108 |
-
main=[pn.Tabs(("Background-Substraction",pn.Column(
|
1109 |
-
#pn.Column(pn.pane.Markdown("### Celltype thresholds"), pn.pane.DataFrame(celltype_color_df)),
|
1110 |
-
#pn.Column(pn.pane.Markdown("### Cell Subtype thresholds"), pn.pane.DataFrame(cellsubtype_color_df)),
|
1111 |
-
#pn.Column(pn.pane.Markdown("### Cells Before Filtering"),pn.pane.Str(cells_before_filter)),
|
1112 |
-
#pn.Column(pn.pane.Markdown("### Cells After Filtering Nucleus"),pn.pane.Str(cells_after_filter_nucleus)),
|
1113 |
-
#pn.Column(pn.pane.Markdown("### Cells After Filtering Intensity"),pn.pane.Str(cells_after_filter_intensity)),
|
1114 |
-
#pn.Column(pn.pane.Markdown("### Dataframe after filtering"), pn.pane.DataFrame(filtered_dataframe.head())),
|
1115 |
-
pn.Column(pn.pane.Markdown("### The metadata obtained that specifies the localisation:"), metadata_with_localisation.head(8)),
|
1116 |
-
pn.Column(pn.pane.Markdown("### The channels and exposure of each intensities column"), bs_info),
|
1117 |
-
pn.Column(pn.pane.Markdown("### Dataframe after perfroming normalization"),pn.pane.DataFrame(normalization_df.head(), width = 1500)),
|
1118 |
-
pn.Column(pn.pane.Markdown("### Dataframe after background Substraction"), pn.pane.DataFrame(background_substraction_df.head()),
|
1119 |
-
))),
|
1120 |
-
("Quality Control", pn.Column(
|
1121 |
-
quality_check(quality_control_df, not_intensities)
|
1122 |
-
#pn.pane.Markdown("### The Quality check results are:"), quality_check_results(check_shape, check_no_null, check_all_expected_files_present, check_zero_intensities)
|
1123 |
-
))
|
1124 |
-
)],)
|
1125 |
-
|
1126 |
-
|
1127 |
-
# In[66]:
|
1128 |
-
|
1129 |
-
|
1130 |
-
app2.servable()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|