Spaces:
Sleeping
Sleeping
File size: 18,801 Bytes
b10249c 5d75f4a b10249c 5d75f4a b10249c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import os
import numpy as np
import pandas as pd
import subprocess
import os
import random
import re
import pandas as pd
import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt
import matplotlib.colors as mplc
import subprocess
from scipy import signal
import plotly.figure_factory as ff
import plotly
import plotly.graph_objs as go
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
# This function takes in a dataframe, changes the names
# of the column in various ways, and returns the dataframe.
# For best accuracy and generalizability, the code uses
# regular expressions (regex) to find strings for replacement.
def apply_header_changes(df):
# remove lowercase x at beginning of name
df.columns = df.columns.str.replace("^x","")
# remove space at beginning of name
df.columns = df.columns.str.replace("^ ","")
# replace space with underscore
df.columns = df.columns.str.replace(" ","_")
# fix typos
df.columns = df.columns.str.replace("AF_AF","AF")
# change "Cell Id" into "ID"
df.columns = df.columns.str.replace("Cell Id","ID")
# if the ID is the index, change "Cell Id" into "ID"
df.index.name = "ID"
#
df.columns = df.columns.str.replace("","")
return df
def apply_df_changes(df):
# Remove "@1" after the ID in the index
df.index = df.index.str.replace(r'@1$', '')
return df
def compare_headers(expected, actual, name):
missing_actual = np.setdiff1d(expected, actual)
extra_actual = np.setdiff1d(actual, expected)
if len(missing_actual) > 0:
#print("WARNING: File '" + name + "' lacks the following expected header(s) after import header reformatting: \n"
# + str(missing_actual))
print("WARNING: File '" + name + "' lacks the following expected item(s): \n" + str(missing_actual))
if len(extra_actual) > 0:
#print("WARNING: '" + name + "' has the following unexpected header(s) after import header reformatting: \n"
# + str(extra_actual))
print("WARNING: '" + name + "' has the following unexpected item(s): \n" + str(extra_actual))
return None
def add_metadata_location(row):
fc = row['full_column'].lower()
if 'cytoplasm' in fc and 'cell' not in fc and 'nucleus' not in fc:
return 'cytoplasm'
elif 'cell' in fc and 'cytoplasm' not in fc and 'nucleus' not in fc:
return 'cell'
elif 'nucleus' in fc and 'cell' not in fc and 'cytoplasm' not in fc:
return 'nucleus'
else:
return 'unknown'
def get_perc(row, cell_type):
total = row['stroma'] + row['immune'] + row['cancer']+row['endothelial']
return round(row[cell_type]/total *100,1)
# Divide each marker (and its localisation) by the right exposure setting for each group of samples
def divide_exp_time(col, exp_col, metadata):
exp_time = metadata.loc[metadata['full_column'] == col.name, exp_col].values[0]
return col/exp_time
def do_background_sub(col, df, metadata):
#print(col.name)
location = metadata.loc[metadata['full_column'] == col.name, 'localisation'].values[0]
#print('location = ' + location)
channel = metadata.loc[metadata['full_column'] == col.name, 'Channel'].values[0]
#print('channel = ' + channel)
af_target = metadata.loc[
(metadata['Channel']==channel) \
& (metadata['localisation']==location) \
& (metadata['target_lower'].str.contains(r'^af\d{3}$')),\
'full_column'].values[0]
return col - df.loc[:,af_target]
"""
This function plots distributions. It takes in a string title (title), a list of
dataframes from which to plot (dfs), a list of dataframe names for the legend
(names), a list of the desired colors for the plotted samples (colors),
a string for the x-axis label (x_label), ```a float binwidth for histrogram (bin_size)```,
a boolean to show the legend or not (legend),
and the names of the marker(s) to plot (input_labels). If not specified,
the function will plot all markers in one plot. input_labels can either be a
single string, e.g., 'my_marker', or a list, e.g., ['my_marker1','my_marker2'].
The function will create a distribution plot and save it to png. It requires
a list of items not to be considered as markers when evaluating column names
(not_markers) to be in memory. It also requires a desired output location of
the files (output_dir) to already be in memory.
"""
def make_distr_plot_per_sample(title, location, dfs, df_names, colors, x_label, legend, xlims = None, markers = ['all'],not_intensities = None):
### GET LIST OF MARKERS TO PLOT ###
# Get list of markers to plot if not specified by user, using columns in first df
# Writing function(parameter = FILLER) makes that parameter optional when user calls function,
# since it is given a default value!
if markers == ["all"]:
markers = [c for c in dfs[0].columns.values if c not in not_intensities]
elif not isinstance(markers, list):
markers = [markers]
# Make input labels a set to get only unique values, then put back into list
markers = list(set(markers))
### GET XLIMS ###
if xlims == None:
mins = [df.loc[:,markers].min().min() for df in dfs]
maxes = [df.loc[:,markers].max().max() for df in dfs]
xlims = [min(mins), max(maxes)]
if not isinstance(xlims, list):
print("Problem - xlmis not list. Exiting method...")
return None
### CHECK DATA CAN BE PLOTTED ###
# Check for data with only 1 unique value - this will cause error if plotted
group_labels = []
hist_data = []
# Iterate through all dataframes (dfs)
for i in range(len(dfs)):
# Iterate through all marker labels
for f in markers:
# If there is only one unique value in the marker data for this dataframe,
# you cannot plot a distribution plot. It gives you a linear algebra
# singular value matrix error
if dfs[i][f].nunique() != 1:
# Add df name and marker name to labels list
# If we have >1 df, we want to make clear
# which legend label is associated with which df
if len(df_names) > 1:
group_labels.append(df_names[i]+"_"+f)
else:
group_labels.append(f)
# add the data to the data list
hist_data.append(dfs[i][f])
# if no data had >1 unique values, there is nothing to plot
if len(group_labels) < 1:
print("No markers plotted - all were singular value. Names and markers were " + str(df_names) + ", " + str(markers))
return None
### TRANSFORM COLOR ITEMS TO CORRECT TYPE ###
if isinstance(colors[0], tuple):
colors = ['rgb' + str(color) for color in colors]
### PLOT DATA ###
# Create plot
fig = ff.create_distplot(hist_data, group_labels, bin_size=0.1,
#colors=colors, bin_size=bin_size, show_rug=False)#show_hist=False,
colors=colors, show_rug=False)
# Adjust title, font, background color, legend...
fig.update_layout(title_text=title, font=dict(size=18),
plot_bgcolor = 'white', showlegend = legend)#, legend_x = 3)
# Adjust opacity
fig.update_traces(opacity=0.6)
# Adjust x-axis parameters
fig.update_xaxes(title_text = x_label, showline=True, linewidth=2, linecolor='black',
tickfont=dict(size=18), range = xlims) # x lims was here
# Adjust y-axis parameters
fig.update_yaxes(title_text = "Kernel density estimate",showline=True, linewidth=1, linecolor='black',
tickfont=dict(size=18))
### SAVE/DISPLAY PLOT ###
# Save plot to HTML
# plotly.io.write_html(fig, file = output_dir + "/" + title + ".html")
# Plot in new tab
#plot(fig)
# Save to png
filename = os.path.join(location, title.replace(" ","_") + ".png")
fig.write_image(filename)
return None
# this could be changed to use recursion and make it 'smarter'
def shorten_feature_names(long_names):
name_dict = dict(zip(long_names,[n.split('_')[0] for n in long_names]))
names_lts, long_names, iteration = shorten_feature_names_helper(name_dict, long_names, 1)
# names_lts = names long-to-short
# names_stl = names stl
names_stl = {}
for n in names_lts.items():
names_stl[n[1]] = n[0]
return names_lts, names_stl
def shorten_feature_names_helper(name_dict, long_names, iteration):
#print("\nThis is iteration #"+str(iteration))
#print("name_dict is: " + str(name_dict))
#print("long_names is: " + str(long_names))
## If the number of unique nicknames == number of long names
## then the work here is done
#print('\nCompare lengths: ' + str(len(set(name_dict.values()))) + ", " + str(len(long_names)))
#print('set(name_dict.values()): ' + str(set(name_dict.values())))
#print('long_names: ' + str(long_names))
if len(set(name_dict.values())) == len(long_names):
#print('All done!')
return name_dict, long_names, iteration
## otherwise, if the number of unique nicknames is not
## equal to the number of long names (must be shorter than),
## then we need to find more unique names
iteration += 1
nicknames_set = set()
non_unique_nicknames = set()
# construct set of current nicknames
for long_name in long_names:
#print('long_name is ' + long_name + ' and non_unique_nicknames set is ' + str(non_unique_nicknames))
short_name = name_dict[long_name]
if short_name in nicknames_set:
non_unique_nicknames.add(short_name)
else:
nicknames_set.add(short_name)
#print('non_unique_nicknames are: ' + str(non_unique_nicknames))
# figure out all long names associated
# with the non-unique short names
trouble_long_names = set()
for long_name in long_names:
short_name = name_dict[long_name]
if short_name in non_unique_nicknames:
trouble_long_names.add(long_name)
#print('troublesome long names are: ' + str(trouble_long_names))
#print('name_dict: ' + str(name_dict))
# operate on all names that are associated with
# the non-unique short nicknames
for long_name in trouble_long_names:
#print('trouble long name is: ' + long_name)
#print('old nickname is: ' + name_dict[long_name])
name_dict[long_name] = '_'.join(long_name.split('_')[0:iteration])
#print('new nickname is: ' + name_dict[long_name])
shorten_feature_names_helper(name_dict, long_names, iteration)
return name_dict, long_names, iteration
def heatmap_function2(title,
data,
method, metric, cmap,
cbar_kws, xticklabels, save_loc,
row_cluster, col_cluster,
annotations = {'rows':[],'cols':[]}):
sb.set(font_scale= 6.0)
# Extract row and column mappings
row_mappings = []
col_mappings = []
for ann in annotations['rows']:
row_mappings.append(ann['mapping'])
for ann in annotations['cols']:
col_mappings.append(ann['mapping'])
# If empty lists, convert to None so seaborn accepts
# as the row_colors or col_colors objects
if len(row_mappings) == 0:
row_mappings = None
if len(col_mappings) == 0:
col_mappings = None
def heatmap_function(title,
data,
method, metric, cmap,
cbar_kws, xticklabels, save_loc,
row_cluster, col_cluster,
annotations = {'rows':[],'cols':[]}):
sb.set(font_scale= 2.0)
# Extract row and column mappings
row_mappings = []
col_mappings = []
for ann in annotations['rows']:
row_mappings.append(ann['mapping'])
for ann in annotations['cols']:
col_mappings.append(ann['mapping'])
# If empty lists, convert to None so seaborn accepts
# as the row_colors or col_colors objects
if len(row_mappings) == 0:
row_mappings = None
if len(col_mappings) == 0:
col_mappings = None
# Create clustermap
g = sb.clustermap(data = data,
robust = True,
method = method, metric = metric,
cmap = cmap,
row_cluster = row_cluster, col_cluster = col_cluster,
figsize = (40,30),
row_colors=row_mappings, col_colors=col_mappings,
yticklabels = False,
cbar_kws = cbar_kws,
xticklabels = xticklabels)
# To rotate slightly the x labels
plt.setp(g.ax_heatmap.xaxis.get_majorticklabels(), rotation=45)
# Add title
g.fig.suptitle(title, fontsize = 60.0)
#And now for the legends:
# iterate through 'rows', 'cols'
for ann_type in annotations.keys():
# iterate through each individual annotation feature
for ann in annotations[ann_type]:
color_dict = ann['dict']
handles = []
for item in color_dict.keys():
h = g.ax_col_dendrogram.bar(0,0, color = color_dict[item], label = item,
linewidth = 0)
handles.append(h)
legend = plt.legend(handles = handles, loc = ann['location'], title = ann['label'],
bbox_to_anchor=ann['bbox_to_anchor'],
bbox_transform=plt.gcf().transFigure)
ax = plt.gca().add_artist(legend)
# Save image
filename = os.path.join(save_loc, title.lower().replace(" ","_") + ".png")
g.savefig(filename)
return None
# sources -
#https://stackoverflow.com/questions/27988846/how-to-express-classes-on-the-axis-of-a-heatmap-in-seaborn
# https://matplotlib.org/3.1.1/tutorials/intermediate/legend_guide.html
def verify_line_no(filename, lines_read):
# Use Linux "wc -l" command to get the number of lines in the unopened file
wc = subprocess.check_output(['wc', '-l', filename]).decode("utf-8")
# Take that string, turn it into a list, extract the first item,
# and make that an int - this is the number of lines in the file
wc = int(wc.split()[0])
if lines_read != wc:
print("WARNING: '" + filename + "' has " + str(wc) +
" lines, but imported dataframe has "
+ str(lines_read) + " (including header).")
return None
''' def rgb_tuple_from_str(rgb_str):
rgb_str = rgb_str.replace("(","").replace(")","").replace(" ","")
rgb = list(map(float,rgb_str.split(",")))
return tuple(rgb)
'''
def rgb_tuple_from_str(rgb_str):
# Remove unwanted characters and clean the string
rgb_str = rgb_str.replace("(", "").replace(")", "").replace(" ", "").replace("np.float64", "")
# Split the cleaned string and convert to float
try:
rgb = list(map(float, rgb_str.split(",")))
except ValueError as e:
print(f"Error converting string to float: {rgb_str}")
raise e
return tuple(rgb)
def color_dict_to_df(cd, column_name):
df = pd.DataFrame.from_dict(cd, orient = 'index')
df['rgb'] = df.apply(lambda row: (np.float64(row[0]), np.float64(row[1]), np.float64(row[2])), axis = 1)
df = df.drop(columns = [0,1,2])
df['hex'] = df.apply(lambda row: mplc.to_hex(row['rgb']), axis = 1)
df[column_name] = df.index
return df
# p-values that are less than or equal to 0.05
def p_add_star(row):
m = [str('{:0.3e}'.format(m)) + "*"
if m <= 0.05 \
else str('{:0.3e}'.format(m))
for m in row ]
return pd.Series(m)
# assigns a specific number of asterisks based on the thresholds
def p_to_star(row):
output = []
for item in row:
if item <= 0.001:
stars = 3
elif item <= 0.01:
stars = 2
elif item <= 0.05:
stars = 1
else:
stars = 0
value = ''
for i in range(stars):
value += '*'
output.append(value)
return pd.Series(output)
def plot_gaussian_distributions(df):
# Initialize thresholds list to store all calculated thresholds
all_thresholds = []
# Iterate over all columns except the first one (assuming the first one is non-numeric or an index)
for column in df.columns:
# Extract the marker data
marker_data = df[column]
# Calculating mean and standard deviation for each marker
m_mean, m_std = np.mean(marker_data), np.std(marker_data)
# Generating x values for the Gaussian curve
x_vals = np.linspace(marker_data.min(), marker_data.max(), 100)
# Calculating Gaussian distribution curve
gaussian_curve = (1 / (m_std * np.sqrt(2 * np.pi))) * np.exp(-(x_vals - m_mean) ** 2 / (2 * m_std ** 2))
# Creating figure for Gaussian distribution for each marker
fig = go.Figure()
fig.add_trace(go.Scatter(x=x_vals, y=gaussian_curve, mode='lines', name=f'{column} Gaussian Distribution'))
fig.update_layout(title=f'Gaussian Distribution for {column} Marker')
# Calculating thresholds based on each marker's distribution
seuil_1sigma = m_mean + m_std
seuil_2sigma = m_mean + 2 * m_std
seuil_3sigma = m_mean + 3 * m_std
# Display the figures with thresholds
fig.add_shape(type='line', x0=seuil_1sigma, y0=0, x1=seuil_1sigma, y1=np.max(gaussian_curve),
line=dict(color='red', dash='dash'), name=f'Seuil 1σ: {seuil_1sigma:.2f}')
fig.add_shape(type='line', x0=seuil_2sigma, y0=0, x1=seuil_2sigma, y1=np.max(gaussian_curve),
line=dict(color='green', dash='dash'), name=f'Seuil 2σ: {seuil_2sigma:.2f}')
fig.add_shape(type='line', x0=seuil_3sigma, y0=0, x1=seuil_3sigma, y1=np.max(gaussian_curve),
line=dict(color='blue', dash='dash'), name=f'Seuil 3σ: {seuil_3sigma:.2f}')
# Add markers and values to the plot
fig.add_trace(go.Scatter(x=[seuil_1sigma, seuil_2sigma, seuil_3sigma],
y=[0, 0, 0],
mode='markers+text',
text=[f'{seuil_1sigma:.2f}', f'{seuil_2sigma:.2f}', f'{seuil_3sigma:.2f}'],
textposition="top center",
marker=dict(size=10, color=['red', 'green', 'blue']),
name='Threshold Values'))
fig.show()
# Append thresholds for each marker to the list
all_thresholds.append((column, seuil_1sigma, seuil_2sigma, seuil_3sigma)) # Include the column name
# Return thresholds for all markers
return all_thresholds
|