Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Quality_Control.py +1796 -0
- my_modules.py +468 -0
- stored_variables.json +6 -0
Quality_Control.py
ADDED
@@ -0,0 +1,1796 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
import warnings
|
5 |
+
import os
|
6 |
+
import plotly as plt
|
7 |
+
import seaborn as sb
|
8 |
+
import plotly.express as px
|
9 |
+
import panel as pn
|
10 |
+
import holoviews as hv
|
11 |
+
import hvplot.pandas
|
12 |
+
import pandas as pd
|
13 |
+
import numpy as np
|
14 |
+
import json
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
from bokeh.plotting import figure
|
17 |
+
from bokeh.io import push_notebook, show
|
18 |
+
from bokeh.io.export import export_png
|
19 |
+
from bokeh.resources import INLINE
|
20 |
+
from bokeh.embed import file_html
|
21 |
+
from bokeh.io import curdoc
|
22 |
+
from bokeh.models import Span, Label
|
23 |
+
from bokeh.models import ColumnDataSource, Button
|
24 |
+
from my_modules import *
|
25 |
+
|
26 |
+
#Silence FutureWarnings & UserWarnings
|
27 |
+
warnings.filterwarnings('ignore', category= FutureWarning)
|
28 |
+
warnings.filterwarnings('ignore', category= UserWarning)
|
29 |
+
|
30 |
+
|
31 |
+
'''get_ipython().run_line_magic('store', '-r base_dir')
|
32 |
+
get_ipython().run_line_magic('store', '-r set_path')
|
33 |
+
get_ipython().run_line_magic('store', '-r ls_samples')
|
34 |
+
get_ipython().run_line_magic('store', '-r selected_metadata_files')'''
|
35 |
+
|
36 |
+
|
37 |
+
'''# Retrieve the variables from the JSON file
|
38 |
+
with open('stored_variables.json', 'r') as file:
|
39 |
+
stored_vars = json.load(file)
|
40 |
+
|
41 |
+
base_dir = stored_vars['base_dir']
|
42 |
+
set_path = stored_vars['set_path']
|
43 |
+
selected_metadata_files = stored_vars['selected_metadata_files']
|
44 |
+
ls_samples = stored_vars['ls_samples']
|
45 |
+
print(f"Base Directory: {base_dir}")
|
46 |
+
print(f"Set Path: {set_path}")
|
47 |
+
print(f"Selected_metadata_files: {selected_metadata_files}")
|
48 |
+
|
49 |
+
|
50 |
+
print(base_dir)
|
51 |
+
print(set_path)
|
52 |
+
print(ls_samples)
|
53 |
+
print(selected_metadata_files)'''
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
base_dir = '/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431'
|
58 |
+
set_path = 'test'
|
59 |
+
selected_metadata_files = "['Slide_B_DD1s1.one_1.tif.csv', 'Slide_B_DD1s1.one_2.tif.csv']"
|
60 |
+
ls_samples = "['Ashlar_Exposure_Time.csv', 'new_data.csv', 'DD3S1.csv', 'DD3S2.csv', 'DD3S3.csv', 'TMA.csv']"
|
61 |
+
|
62 |
+
pn.extension()
|
63 |
+
|
64 |
+
update_button = pn.widgets.Button(name='CSV Files', button_type='primary')
|
65 |
+
def update_samples(event):
|
66 |
+
with open('/Users/harshithakolipaka/Desktop/CycIF_platform_py/stored_variables.json', 'r') as file:
|
67 |
+
stored_vars = json.load(file)
|
68 |
+
ls_samples = stored_vars['ls_samples']
|
69 |
+
print(ls_samples)
|
70 |
+
update_button.on_click(update_samples)
|
71 |
+
|
72 |
+
csv_files_button = pn.widgets.Button(icon="clipboard", name = " Click on the clipboard to display the selected files", button_type="primary")
|
73 |
+
indicator = pn.indicators.LoadingSpinner(value=False, size=25)
|
74 |
+
|
75 |
+
def handle_click(clicks):
|
76 |
+
with open('/Users/harshithakolipaka/Desktop/CycIF_platform_py/stored_variables.json', 'r') as file:
|
77 |
+
stored_vars = json.load(file)
|
78 |
+
ls_samples = stored_vars['ls_samples']
|
79 |
+
return f'CSV Files Selected: {ls_samples}'
|
80 |
+
|
81 |
+
pn.Row(
|
82 |
+
csv_files_button,
|
83 |
+
pn.bind(handle_click, csv_files_button.param.clicks),
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
# ## I.2. *DIRECTORIES
|
88 |
+
|
89 |
+
set_path = 'test'
|
90 |
+
|
91 |
+
# Set base directory
|
92 |
+
|
93 |
+
directorio_actual = os.getcwd()
|
94 |
+
print(directorio_actual)
|
95 |
+
|
96 |
+
##### MAC WORKSTATION #####
|
97 |
+
#base_dir = r'/Volumes/LaboLabrie/Projets/OC_TMA_Pejovic/Temp/Zoe/CyCIF_pipeline/'
|
98 |
+
###########################
|
99 |
+
|
100 |
+
##### WINDOWS WORKSTATION #####
|
101 |
+
#base_dir = r'C:\Users\LaboLabrie\gerz2701\cyCIF-pipeline\Set_B'
|
102 |
+
###############################
|
103 |
+
input_path = base_dir
|
104 |
+
|
105 |
+
##### LOCAL WORKSTATION #####
|
106 |
+
#base_dir = r'/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431/'
|
107 |
+
base_dir = input_path
|
108 |
+
print(base_dir)
|
109 |
+
#############################
|
110 |
+
|
111 |
+
#set_name = 'Set_A'
|
112 |
+
#set_name = 'test'
|
113 |
+
set_name = set_path
|
114 |
+
|
115 |
+
project_name = set_name # Project name
|
116 |
+
step_suffix = 'qc_eda' # Curent part (here part I)
|
117 |
+
previous_step_suffix_long = "" # Previous part (here empty)
|
118 |
+
|
119 |
+
# Initial input data directory
|
120 |
+
input_data_dir = os.path.join(base_dir, project_name + "_data")
|
121 |
+
|
122 |
+
# QC/EDA output directories
|
123 |
+
# global output
|
124 |
+
output_data_dir = os.path.join(base_dir, project_name + "_" + step_suffix)
|
125 |
+
# images subdirectory
|
126 |
+
output_images_dir = os.path.join(output_data_dir,"images")
|
127 |
+
|
128 |
+
# Data and Metadata directories
|
129 |
+
# global data
|
130 |
+
metadata_dir = os.path.join(base_dir, project_name + "_metadata")
|
131 |
+
# images subdirectory
|
132 |
+
metadata_images_dir = os.path.join(metadata_dir,"images")
|
133 |
+
|
134 |
+
# Create directories if they don't already exist
|
135 |
+
for d in [base_dir, input_data_dir, output_data_dir, output_images_dir, metadata_dir, metadata_images_dir]:
|
136 |
+
if not os.path.exists(d):
|
137 |
+
print("Creation of the" , d, "directory...")
|
138 |
+
os.makedirs(d)
|
139 |
+
else :
|
140 |
+
print("The", d, "directory already exists !")
|
141 |
+
|
142 |
+
os.chdir(input_data_dir)
|
143 |
+
with open('/Users/harshithakolipaka/Desktop/CycIF_platform_py/stored_variables.json', 'r') as file:
|
144 |
+
stored_vars = json.load(file)
|
145 |
+
ls_samples = stored_vars['ls_samples']
|
146 |
+
selected_metadata_files = stored_vars['selected_metadata_files']
|
147 |
+
|
148 |
+
directories = []
|
149 |
+
for i in [base_dir, input_data_dir, output_data_dir, output_images_dir, metadata_dir, metadata_images_dir]:
|
150 |
+
directories.append(i)
|
151 |
+
|
152 |
+
directories
|
153 |
+
|
154 |
+
def print_directories(directories):
|
155 |
+
|
156 |
+
label_path = []
|
157 |
+
labels = [
|
158 |
+
"base_dir",
|
159 |
+
"input_data_dir",
|
160 |
+
"output_data_dir",
|
161 |
+
"output_images_dir",
|
162 |
+
"metadata_dir",
|
163 |
+
"metadata_images_dir"
|
164 |
+
]
|
165 |
+
|
166 |
+
for label, path in zip(labels, directories):
|
167 |
+
label_path.append(f"{label} : {path}")
|
168 |
+
|
169 |
+
return label_path
|
170 |
+
|
171 |
+
print_directories
|
172 |
+
|
173 |
+
|
174 |
+
# Verify paths
|
175 |
+
print('base_dir :', base_dir)
|
176 |
+
print('input_data_dir :', input_data_dir)
|
177 |
+
print('output_data_dir :', output_data_dir)
|
178 |
+
print('output_images_dir :', output_images_dir)
|
179 |
+
print('metadata_dir :', metadata_dir)
|
180 |
+
print('metadata_images_dir :', metadata_images_dir)
|
181 |
+
|
182 |
+
|
183 |
+
# ## I.3. FILES
|
184 |
+
|
185 |
+
# Listing all the .csv files in the metadata/data directory
|
186 |
+
# Don't forget to move the csv files into the proj_data directory
|
187 |
+
# if the data dir is empty it's not going to work
|
188 |
+
#ls_samples = [sample for sample in os.listdir(input_data_dir) if sample.endswith(".csv")]
|
189 |
+
print("The following CSV files were detected:\n\n",[sample for sample in ls_samples], "\n\nin", input_data_dir, "directory.")
|
190 |
+
|
191 |
+
|
192 |
+
# In[26]:
|
193 |
+
|
194 |
+
|
195 |
+
import os
|
196 |
+
import pandas as pd
|
197 |
+
|
198 |
+
def combine_and_save_metadata_files(metadata_dir, selected_metadata_files):
|
199 |
+
if len(selected_metadata_files) == []:
|
200 |
+
if not file:
|
201 |
+
warnings.warn("No Ashlar file uploaded. Please upload a valid file.", UserWarning)
|
202 |
+
return
|
203 |
+
|
204 |
+
elif len(selected_metadata_files) > 1:
|
205 |
+
combined_metadata_df = pd.DataFrame()
|
206 |
+
|
207 |
+
for file in selected_metadata_files:
|
208 |
+
file_path = os.path.join(metadata_dir, file)
|
209 |
+
df = pd.read_csv(file_path)
|
210 |
+
combined_metadata_df = pd.concat([combined_metadata_df, df], ignore_index=True)
|
211 |
+
|
212 |
+
combined_metadata_df.to_csv(os.path.join(metadata_dir, "combined_metadata.csv"), index=False)
|
213 |
+
print(f"Combined metadata file saved as 'combined_metadata.csv' in {metadata_dir}")
|
214 |
+
|
215 |
+
return combined_metadata_df
|
216 |
+
|
217 |
+
else:
|
218 |
+
if selected_metadata_files:
|
219 |
+
single_file_path = os.path.join(metadata_dir, selected_metadata_files[0])
|
220 |
+
single_file_df = pd.read_csv(single_file_path)
|
221 |
+
print(f"Only one file selected: {selected_metadata_files[0]}")
|
222 |
+
return single_file_df
|
223 |
+
else:
|
224 |
+
print("No metadata files selected.")
|
225 |
+
return pd.DataFrame()
|
226 |
+
|
227 |
+
|
228 |
+
# In[27]:
|
229 |
+
|
230 |
+
|
231 |
+
print(combine_and_save_metadata_files(metadata_dir, selected_metadata_files))
|
232 |
+
|
233 |
+
|
234 |
+
# In[28]:
|
235 |
+
|
236 |
+
|
237 |
+
ls_samples
|
238 |
+
|
239 |
+
|
240 |
+
# In[29]:
|
241 |
+
|
242 |
+
|
243 |
+
df = pd.read_csv(os.path.join(input_data_dir, ls_samples[0]),index_col = 0, nrows = 1)
|
244 |
+
df.head(10)
|
245 |
+
|
246 |
+
|
247 |
+
# In[30]:
|
248 |
+
|
249 |
+
|
250 |
+
# First gather information on expected headers using first file in ls_samples
|
251 |
+
# Read in the first row of the file corresponding to the first sample (index = 0) in ls_samples
|
252 |
+
df = pd.read_csv(os.path.join(input_data_dir, ls_samples[0]) , index_col = 0, nrows = 1)
|
253 |
+
|
254 |
+
|
255 |
+
# Make sure the file was imported correctly
|
256 |
+
print("df :\n", df.head(), "\n")
|
257 |
+
print("df's columns :\n", df.columns, "\n")
|
258 |
+
print("df's index :\n", df.index, "\n")
|
259 |
+
print("df's index name :\n", df.index.name)
|
260 |
+
|
261 |
+
|
262 |
+
# In[31]:
|
263 |
+
|
264 |
+
|
265 |
+
df.head()
|
266 |
+
|
267 |
+
|
268 |
+
# In[32]:
|
269 |
+
|
270 |
+
|
271 |
+
# Verify that the ID column in input file became the index
|
272 |
+
# Verify that the index name column is "ID", if not, rename it
|
273 |
+
if df.index.name != "ID":
|
274 |
+
print("Expected the first column in input file (index_col = 0) to be 'ID'. \n"
|
275 |
+
"This column will be used to set the index names (cell number for each sample). \n"
|
276 |
+
"It appears that the column '" + df.index.name + "' was actually the imported as the index column.")
|
277 |
+
#df.index.name = 'ID'
|
278 |
+
print("A new index name (first column) will be given ('ID') to replace the current one '" + df.index.name + "'\n")
|
279 |
+
|
280 |
+
# Apply the changes to the headers as specified with apply_header_changes() function (in my_modules.py)
|
281 |
+
# Apply the changes to the dataframe rows as specified with apply_df_changes() function (in my_modules.py)
|
282 |
+
#df = apply_header_changes(df)
|
283 |
+
print(df.index)
|
284 |
+
df.index = df.index.str.replace(r'@1$', '')
|
285 |
+
df = apply_df_changes(df)
|
286 |
+
|
287 |
+
# Set variable to hold default header values
|
288 |
+
expected_headers = df.columns.values
|
289 |
+
expected_header = True
|
290 |
+
print(expected_header)
|
291 |
+
|
292 |
+
intial_dataframe = df
|
293 |
+
# Make sure the file is now formated correctly
|
294 |
+
print("\ndf :\n", df.head(), "\n")
|
295 |
+
print("df's columns :\n", df.columns, "\n")
|
296 |
+
print("df's index :\n", df.index, "\n")
|
297 |
+
print("df's index name :\n", df.index.name)
|
298 |
+
|
299 |
+
|
300 |
+
# In[33]:
|
301 |
+
|
302 |
+
|
303 |
+
df.head()
|
304 |
+
|
305 |
+
|
306 |
+
# In[34]:
|
307 |
+
|
308 |
+
|
309 |
+
df.head()
|
310 |
+
|
311 |
+
|
312 |
+
# In[35]:
|
313 |
+
|
314 |
+
|
315 |
+
print("Used " + ls_samples[0] + " to determine the expected and corrected headers for all files.\n")
|
316 |
+
print("These headers are: \n" + ", ".join([h for h in expected_headers]))
|
317 |
+
|
318 |
+
corrected_headers = True
|
319 |
+
|
320 |
+
|
321 |
+
# In[36]:
|
322 |
+
|
323 |
+
|
324 |
+
for sample in ls_samples:
|
325 |
+
file_path = os.path.join(input_data_dir,sample)
|
326 |
+
print(file_path)
|
327 |
+
|
328 |
+
|
329 |
+
# In[37]:
|
330 |
+
|
331 |
+
|
332 |
+
# Import all the others files
|
333 |
+
dfs = {}
|
334 |
+
###############################
|
335 |
+
# !! This may take a while !! #
|
336 |
+
###############################
|
337 |
+
errors = []
|
338 |
+
|
339 |
+
for sample in ls_samples:
|
340 |
+
file_path = os.path.join(input_data_dir,sample)
|
341 |
+
|
342 |
+
try:
|
343 |
+
# Read the CSV file
|
344 |
+
df = pd.read_csv(file_path, index_col=0)
|
345 |
+
# Check if the DataFrame is empty, if so, don't continue trying to process df and remove it
|
346 |
+
|
347 |
+
if not df.empty:
|
348 |
+
# Manipulations necessary for concatenation
|
349 |
+
df = apply_header_changes(df)
|
350 |
+
df = apply_df_changes(df)
|
351 |
+
# Reorder the columns to match the expected headers list
|
352 |
+
#df = df.reindex(columns=expected_headers)
|
353 |
+
print(df.head(1))
|
354 |
+
print(sample, "file is processed !\n")
|
355 |
+
#print(df)
|
356 |
+
|
357 |
+
# Compare df's header df against what is expected
|
358 |
+
compare_headers(expected_headers, df.columns.values, sample)
|
359 |
+
#print(df.columns.values)
|
360 |
+
# Add a new colunm to identify the csv file (sample) where the df comes from
|
361 |
+
df['Sample_ID'] = sample
|
362 |
+
|
363 |
+
except pd.errors.EmptyDataError:
|
364 |
+
errors.append(f'\nEmpty data error in {sample} file. Removing from analysis...')
|
365 |
+
print(f'\nEmpty data error in {sample} file. Removing from analysis...')
|
366 |
+
ls_samples.remove(sample)
|
367 |
+
|
368 |
+
# Add df to dfs
|
369 |
+
dfs[sample] = df
|
370 |
+
|
371 |
+
print(dfs)
|
372 |
+
|
373 |
+
|
374 |
+
dfs.values()
|
375 |
+
|
376 |
+
# Merge dfs into one df
|
377 |
+
df = pd.concat(dfs.values(), ignore_index=False , sort = False)
|
378 |
+
del dfs
|
379 |
+
merge = True
|
380 |
+
merged_dataframe = df
|
381 |
+
df.head()
|
382 |
+
|
383 |
+
# Set index to Sample_ID + cell number :
|
384 |
+
# create a new custom index for df based on the sample names and integer cell numbers, and then remove the temporary columns 'level_0' and 'index' that were introduced during the operations
|
385 |
+
|
386 |
+
# Creates a copy of the DataFrame df and resets its index without creating a new column for the old index
|
387 |
+
# This essentially removes the old index column and replaces it with a default integer index
|
388 |
+
df = df.copy().reset_index(drop=True)
|
389 |
+
|
390 |
+
#print(df)
|
391 |
+
|
392 |
+
# Initializing an empty list index to store the new index labels for the DataFrame
|
393 |
+
index = []
|
394 |
+
|
395 |
+
for sample in ls_samples:
|
396 |
+
# Extract a chunk of data from the original df where the 'Sample_ID' column matches the current sample name
|
397 |
+
# This chunk is stored in the df_chunk df, which is a subset of the original data for that specific sample
|
398 |
+
df_chunk = df.loc[df['Sample_ID'] == sample,:].copy()
|
399 |
+
old_index = df_chunk.index
|
400 |
+
# Reset the index of the df_chunk df, removing the old index and replacing it with a default integer index
|
401 |
+
df_chunk = df_chunk.reset_index(drop=True)
|
402 |
+
# A new index is created for the df_chunk df. It combines the sample name with 'Cell_' and the integer index values, converting them to strings
|
403 |
+
# This new index will have labels like 'SampleName_Cell_0', 'SampleName_Cell_1', and so on.
|
404 |
+
sample = sample.split('.')[0]
|
405 |
+
df_chunk = df_chunk.set_index(f'{sample}_Cell_' + df_chunk.index.astype(str))
|
406 |
+
# The index values of df_chunk are then added to the index list
|
407 |
+
index = index + df_chunk.index.values.tolist()
|
408 |
+
|
409 |
+
# After processing all the samples in the loop, assign the index list as the new index of the original df.
|
410 |
+
df.index = index
|
411 |
+
# Remove the 'level_0' and 'index' columns from df
|
412 |
+
df = df.loc[:,~df.columns.isin(['level_0','index'])]
|
413 |
+
assigned_new_index = True
|
414 |
+
df.head()
|
415 |
+
|
416 |
+
|
417 |
+
# ### I.3.2. NOT_INTENSITIES
|
418 |
+
|
419 |
+
# not_intensities is the list of the columns unrelated to the markers fluorescence intensities
|
420 |
+
# Can include items that aren't in a given header.
|
421 |
+
#not_intensitiehttp://localhost:8888/lab/tree/Downloads/wetransfer_data-zip_2024-05-17_1431/1_qc_eda.ipynb
|
422 |
+
#I.3.2.-NOT_INTENSITIESs = ['Nuc_X', 'Nuc_X_Inv', 'Nuc_Y', 'Nuc_Y_Inv', 'Nucleus_Roundness', 'Nucleus_Size', 'Cell_Size',
|
423 |
+
# 'ROI_index', 'Sample_ID', 'replicate_ID', 'Cell_ID','cell_type', 'cell_subtype', 'cluster','ID',
|
424 |
+
# 'Cytoplasm_Size', 'immune_checkpoint', 'Unique_ROI_index', 'Patient', 'Primary_chem(1)_vs_surg(0)']
|
425 |
+
# not_intensities is the list of the columns unrelated to the markers fluorescence intensities
|
426 |
+
# Can include items that aren't in a given header.
|
427 |
+
#not_intensities = ['Nuc_X', 'Nuc_X_Inv', 'Nuc_Y', 'Nuc_Y_Inv', 'Nucleus_Roundness', 'Nucleus_Size', 'Cell_Size',
|
428 |
+
# 'ROI_index', 'Sample_ID', 'replicate_ID', 'Cell_ID','cell_type', 'cell_subtype', 'cluster','ID',
|
429 |
+
# 'Cytoplasm_Size', 'immune_checkpoint', 'Unique_ROI_index', 'Patient', 'Primary_chem(1)_vs_surg(0)']
|
430 |
+
|
431 |
+
# Get all column names
|
432 |
+
all_columns = df.columns.tolist()
|
433 |
+
|
434 |
+
# Create a list to store non-intensity column names
|
435 |
+
not_intensities = []
|
436 |
+
intensity_columns = []
|
437 |
+
# Iterate over each column name
|
438 |
+
for column in all_columns:
|
439 |
+
# Check if the column name contains 'Intensity_Average'
|
440 |
+
if 'Intensity_Average' not in column:
|
441 |
+
print(not_intensities)
|
442 |
+
not_intensities.append(column)
|
443 |
+
else:
|
444 |
+
intensity_columns.append(column)
|
445 |
+
|
446 |
+
|
447 |
+
# Create a new DataFrame with non-intensity columns
|
448 |
+
not_intensities_df = pd.DataFrame(not_intensities)
|
449 |
+
print("Non-intensity columns:")
|
450 |
+
print(not_intensities)
|
451 |
+
|
452 |
+
print("non-intensity DataFrame:")
|
453 |
+
not_intensities
|
454 |
+
#print(len(intensity_columns))
|
455 |
+
|
456 |
+
|
457 |
+
pd.DataFrame(not_intensities)
|
458 |
+
|
459 |
+
path_not_intensities = os.path.join(metadata_dir,"not_intensities.csv")
|
460 |
+
|
461 |
+
# If this file already exists, add only not_intensities items of the list not already present in file
|
462 |
+
if os.path.exists(path_not_intensities):
|
463 |
+
print("'not_intensities.csv' already exists.")
|
464 |
+
print("Reconciling file and Jupyter notebook lists.")
|
465 |
+
file_not_intensities = open(path_not_intensities, "r")
|
466 |
+
file_ni = file_not_intensities.read().splitlines()
|
467 |
+
# Set difference to identify items not already in file
|
468 |
+
to_add = set(not_intensities) - set(file_ni)
|
469 |
+
# We want not_intensities to the a complete list
|
470 |
+
not_intensities = list(set(file_ni) | set(not_intensities))
|
471 |
+
file_not_intensities.close()
|
472 |
+
file_not_intensities = open(path_not_intensities, "a")
|
473 |
+
for item in to_add:
|
474 |
+
file_not_intensities.write(item +"\n")
|
475 |
+
file_not_intensities.close()
|
476 |
+
|
477 |
+
else:
|
478 |
+
# The file does not yet exist
|
479 |
+
print("Could not find " + path_not_intensities + ". Creating now.")
|
480 |
+
file_not_intensities = open(path_not_intensities, "w")
|
481 |
+
for item in not_intensities:
|
482 |
+
file_not_intensities.write(item + "\n")
|
483 |
+
file_not_intensities.close()
|
484 |
+
|
485 |
+
|
486 |
+
# In[46]:
|
487 |
+
|
488 |
+
|
489 |
+
not_intensities_df = pd.read_csv(path_not_intensities)
|
490 |
+
not_intensities_df
|
491 |
+
|
492 |
+
|
493 |
+
# In[47]:
|
494 |
+
|
495 |
+
|
496 |
+
# Columns we want to keep: not_intensities, and any intensity column that contains 'Intensity_Average' (drop any intensity marker column that is not a mean intensity)
|
497 |
+
to_keep = not_intensities + [x for x in df.columns.values[~df.columns.isin(not_intensities)] if 'Intensity_Average' in x]
|
498 |
+
|
499 |
+
to_keep
|
500 |
+
|
501 |
+
|
502 |
+
# In[48]:
|
503 |
+
|
504 |
+
|
505 |
+
print(len(to_keep) - 1)
|
506 |
+
|
507 |
+
|
508 |
+
# In[49]:
|
509 |
+
|
510 |
+
|
511 |
+
# However, our to_keep list contains items that might not be in our df headers!
|
512 |
+
# These items are from our not_intensities list. So let's ask for only those items from to_keep that are actually found in our df
|
513 |
+
# Retains only the columns from the to_keep list that are found in the df's headers (columns).
|
514 |
+
# This ensures that we are only keeping the columns that exist in your df, avoiding any potential issues with non-existent column names.
|
515 |
+
# The result is a df containing only the specified columns.
|
516 |
+
df = df[[x for x in to_keep if x in df.columns.values]]
|
517 |
+
|
518 |
+
df.head()
|
519 |
+
|
520 |
+
|
521 |
+
# In[50]:
|
522 |
+
|
523 |
+
|
524 |
+
import pandas as pd
|
525 |
+
|
526 |
+
# Assuming you have a DataFrame named 'df'
|
527 |
+
# df = pd.read_csv('your_file.csv')
|
528 |
+
|
529 |
+
# Get all column names
|
530 |
+
all_columns = df.columns.tolist()
|
531 |
+
|
532 |
+
# Create an empty list to store intensity markers
|
533 |
+
intensity_marker = []
|
534 |
+
|
535 |
+
# Iterate over each column name
|
536 |
+
for column in all_columns:
|
537 |
+
# Check if the column name contains 'Intensity_Average'
|
538 |
+
if 'Intensity_Average' in column:
|
539 |
+
# Split the column name by underscore
|
540 |
+
parts = column.split('_')
|
541 |
+
|
542 |
+
# Extract the word before the first underscore
|
543 |
+
marker = parts[0]
|
544 |
+
|
545 |
+
# Add the marker to the intensity_marker list
|
546 |
+
intensity_marker.append(marker)
|
547 |
+
|
548 |
+
# Remove duplicates from the intensity_marker list
|
549 |
+
intensity_marker = list(set(intensity_marker))
|
550 |
+
|
551 |
+
print("Intensity Markers:")
|
552 |
+
print(intensity_marker)
|
553 |
+
|
554 |
+
# Create a callback function to update the intensities array
|
555 |
+
def update_intensities(event):
|
556 |
+
global intensities
|
557 |
+
global intensities_df
|
558 |
+
new_intensities = []
|
559 |
+
selected_columns = []
|
560 |
+
for marker, cell, cytoplasm, nucleus in zip(marker_options_df['Marker'], marker_options_df['Cell'], marker_options_df['Cytoplasm'], marker_options_df['Nucleus']):
|
561 |
+
if cell:
|
562 |
+
new_intensities.append(f"{marker}_Cell_Intensity_Average")
|
563 |
+
selected_columns.append(f"{marker}_Cell_Intensity_Average")
|
564 |
+
if cytoplasm:
|
565 |
+
new_intensities.append(f"{marker}_Cytoplasm_Intensity_Average")
|
566 |
+
selected_columns.append(f"{marker}_Cytoplasm_Intensity_Average")
|
567 |
+
if nucleus:
|
568 |
+
new_intensities.append(f"{marker}_Nucleus_Intensity_Average")
|
569 |
+
selected_columns.append(f"{marker}_Nucleus_Intensity_Average")
|
570 |
+
intensities = new_intensities
|
571 |
+
if selected_columns:
|
572 |
+
intensities_df = merged_dataframe[selected_columns]
|
573 |
+
else:
|
574 |
+
intensities_df = pd.DataFrame()
|
575 |
+
print("Updated intensities DataFrame:")
|
576 |
+
print(intensities_df)
|
577 |
+
|
578 |
+
|
579 |
+
# In[54]:
|
580 |
+
|
581 |
+
|
582 |
+
tabulator_formatters = {
|
583 |
+
'bool': {'type': 'tickCross'}
|
584 |
+
}
|
585 |
+
|
586 |
+
# Create a DataFrame with the intensity markers and default values
|
587 |
+
marker_options_df = pd.DataFrame({
|
588 |
+
'Marker': intensity_marker,
|
589 |
+
'Cell': [False] * len(intensity_marker),
|
590 |
+
'Cytoplasm': [False] * len(intensity_marker),
|
591 |
+
'Nucleus': [False] * len(intensity_marker)
|
592 |
+
})
|
593 |
+
|
594 |
+
# Create the Tabulator widget and link the callback function
|
595 |
+
tabulator = pn.widgets.Tabulator(marker_options_df, formatters=tabulator_formatters, sizing_mode='stretch_width')
|
596 |
+
tabulator.param.watch(update_intensities,'value')
|
597 |
+
|
598 |
+
# Create a Panel layout with the Tabulator widget
|
599 |
+
marker_options_layout = pn.Column(tabulator, sizing_mode="stretch_width")
|
600 |
+
|
601 |
+
import panel as pn
|
602 |
+
import pandas as pd
|
603 |
+
import random
|
604 |
+
import asyncio
|
605 |
+
|
606 |
+
# Initialize the Panel extension with Tabulator
|
607 |
+
pn.extension('tabulator')
|
608 |
+
|
609 |
+
# Create a DataFrame with the intensity markers and default values
|
610 |
+
marker_options_df = pd.DataFrame({
|
611 |
+
'Marker': intensity_marker,
|
612 |
+
'Cell': [True] * len(intensity_marker),
|
613 |
+
'Cytoplasm': [False] * len(intensity_marker),
|
614 |
+
'Nucleus': [False] * len(intensity_marker)
|
615 |
+
})
|
616 |
+
|
617 |
+
# Define formatters for the Tabulator widget
|
618 |
+
tabulator_formatters = {
|
619 |
+
'Cell': {'type': 'tickCross'},
|
620 |
+
'Cytoplasm': {'type': 'tickCross'},
|
621 |
+
'Nucleus': {'type': 'tickCross'}
|
622 |
+
}
|
623 |
+
|
624 |
+
# Create the Tabulator widget
|
625 |
+
tabulator = pn.widgets.Tabulator(marker_options_df, formatters=tabulator_formatters, sizing_mode='stretch_width')
|
626 |
+
|
627 |
+
# Create a DataFrame to store the initial intensities
|
628 |
+
new_data = [{'Description': f"{marker}_Cell_Intensity_Average"} for marker in intensity_marker if True]
|
629 |
+
new_data_df = pd.DataFrame(new_data)
|
630 |
+
|
631 |
+
# Create a widget to display the new data as a DataFrame
|
632 |
+
new_data_table = pn.widgets.Tabulator(new_data_df, name='New Data Table', sizing_mode='stretch_width')
|
633 |
+
|
634 |
+
# Create a button to start the update process
|
635 |
+
run_button = pn.widgets.Button(name="Save Selection", button_type='primary')
|
636 |
+
|
637 |
+
# Define the update_intensities function
|
638 |
+
def update_intensities():
|
639 |
+
global new_data, new_data_df
|
640 |
+
new_data = []
|
641 |
+
for _, row in tabulator.value.iterrows():
|
642 |
+
marker = row['Marker']
|
643 |
+
if row['Cell']:
|
644 |
+
new_data.append({'Description': f"{marker}_Cell_Intensity_Average"})
|
645 |
+
if row['Cytoplasm']:
|
646 |
+
new_data.append({'Description': f"{marker}_Cytoplasm_Intensity_Average"})
|
647 |
+
if row['Nucleus']:
|
648 |
+
new_data.append({'Description': f"{marker}_Nucleus_Intensity_Average"})
|
649 |
+
new_data_df = pd.DataFrame(new_data)
|
650 |
+
new_data_table.value = new_data_df
|
651 |
+
|
652 |
+
# Define the runner function
|
653 |
+
async def runner(event):
|
654 |
+
update_intensities()
|
655 |
+
|
656 |
+
# Bind the runner function to the button
|
657 |
+
run_button.on_click(runner)
|
658 |
+
|
659 |
+
# Layout
|
660 |
+
updated_intensities = pn.Column(tabulator, run_button, new_data_table, sizing_mode="stretch_width")
|
661 |
+
|
662 |
+
pn.extension()
|
663 |
+
# Serve the layout
|
664 |
+
#updated_intensities.servable()
|
665 |
+
|
666 |
+
|
667 |
+
intensities_df = new_data_table
|
668 |
+
intensities_df
|
669 |
+
|
670 |
+
intensities_df = pn.pane.DataFrame(intensities_df)
|
671 |
+
intensities_df
|
672 |
+
|
673 |
+
print(intensities_df)
|
674 |
+
# ## I.4. QC CHECKS
|
675 |
+
|
676 |
+
def quality_check_results(check_shape, check_no_null,check_zero_intensities):
|
677 |
+
results = [
|
678 |
+
f"Check Index: {check_index}",
|
679 |
+
f"Check Shape: {check_shape}",
|
680 |
+
f"Check No Null: {check_no_null}",
|
681 |
+
f"Check Zero Intensities: {check_zero_intensities}"
|
682 |
+
]
|
683 |
+
return pn.Column(*[pn.Row(result) for result in results], sizing_mode="stretch_width")
|
684 |
+
|
685 |
+
print(ls_samples)
|
686 |
+
|
687 |
+
def check_index_format(index_str, ls_samples):
|
688 |
+
"""
|
689 |
+
Checks if the given index string follows the specified format.
|
690 |
+
|
691 |
+
Args:
|
692 |
+
index_str (str): The index string to be checked.
|
693 |
+
ls_samples (list): A list of valid sample names.
|
694 |
+
|
695 |
+
Returns:
|
696 |
+
bool: True if the index string follows the format, False otherwise.
|
697 |
+
"""
|
698 |
+
# Split the index string into parts
|
699 |
+
parts = index_str.split('_')
|
700 |
+
|
701 |
+
# Check if there are exactly 3 parts
|
702 |
+
if len(parts) != 3:
|
703 |
+
print(len(parts))
|
704 |
+
return False
|
705 |
+
|
706 |
+
# Check if the first part is in ls_samples
|
707 |
+
sample_name = parts[0]
|
708 |
+
if f'{sample_name}.csv' not in ls_samples:
|
709 |
+
print(sample_name)
|
710 |
+
return False
|
711 |
+
|
712 |
+
# Check if the second part is in ['cell', 'cytoplasm', 'nucleus']
|
713 |
+
location = parts[1]
|
714 |
+
valid_locations = ['Cell', 'Cytoplasm', 'Nucleus']
|
715 |
+
if location not in valid_locations:
|
716 |
+
print(location)
|
717 |
+
return False
|
718 |
+
|
719 |
+
# Check if the third part is a number
|
720 |
+
try:
|
721 |
+
index = int(parts[2])
|
722 |
+
except ValueError:
|
723 |
+
print(index)
|
724 |
+
return False
|
725 |
+
|
726 |
+
# If all checks pass, return True
|
727 |
+
return True
|
728 |
+
|
729 |
+
|
730 |
+
# In[70]:
|
731 |
+
|
732 |
+
|
733 |
+
# Let's take a look at a few features to make sure our dataframe is as expected
|
734 |
+
df.index
|
735 |
+
def check_format_ofindex(index):
|
736 |
+
for index in df.index:
|
737 |
+
check_index = check_index_format(index, ls_samples)
|
738 |
+
if check_index is False:
|
739 |
+
index_format = "Bad"
|
740 |
+
return index_format
|
741 |
+
|
742 |
+
index_format = "Good"
|
743 |
+
return index_format
|
744 |
+
print(check_format_ofindex(df.index))
|
745 |
+
|
746 |
+
|
747 |
+
# In[71]:
|
748 |
+
|
749 |
+
|
750 |
+
df.shape
|
751 |
+
check_index = df.index
|
752 |
+
check_shape = df.shape
|
753 |
+
print(check_shape)
|
754 |
+
|
755 |
+
|
756 |
+
# In[72]:
|
757 |
+
|
758 |
+
|
759 |
+
# Check for NaN entries (should not be any unless columns do not align)
|
760 |
+
# False means no NaN entries
|
761 |
+
# True means NaN entries
|
762 |
+
df.isnull().any().any()
|
763 |
+
|
764 |
+
check_no_null = df.isnull().any().any()
|
765 |
+
|
766 |
+
|
767 |
+
# In[73]:
|
768 |
+
|
769 |
+
|
770 |
+
# Check that all expected files were imported into final dataframe
|
771 |
+
if sorted(df.Sample_ID.unique()) == sorted(ls_samples):
|
772 |
+
print("All expected filenames are present in big df Sample_ID column.")
|
773 |
+
check_all_expected_files_present = "All expected filenames are present in big df Sample_ID column."
|
774 |
+
else:
|
775 |
+
compare_headers(['no samples'], df.Sample_ID.unique(), "big df Sample_ID column")
|
776 |
+
check_all_expected_files_present = compare_headers(['no samples'], df.Sample_ID.unique(), "big df Sample_ID column")
|
777 |
+
|
778 |
+
print(df.Sample_ID)
|
779 |
+
|
780 |
+
|
781 |
+
# In[74]:
|
782 |
+
|
783 |
+
|
784 |
+
# Delete rows that have 0 value mean intensities for intensity columns
|
785 |
+
print("df.shape before removing 0 mean values: ", df.shape)
|
786 |
+
|
787 |
+
# We use the apply method on df to calculate the mean intensity for each row. It's done this by applying a lambda function to each row.
|
788 |
+
# The lambda function excludes the columns listed in the not_intensities list (which are not to be considered for mean intensity calculations)
|
789 |
+
# and calculates the mean of the remaining values in each row.
|
790 |
+
###############################
|
791 |
+
# !! This may take a while !! #
|
792 |
+
###############################
|
793 |
+
# Calculate mean intensity excluding 'not_intensities' columns
|
794 |
+
mean_intensity = df.loc[:, ~df.columns.isin(not_intensities)].mean(axis=1)
|
795 |
+
|
796 |
+
# Check if there are any 0 mean intensity values
|
797 |
+
if (mean_intensity == 0).any():
|
798 |
+
df = df.loc[mean_intensity > 0, :]
|
799 |
+
print("Shape after removing 0 mean values: ", df.shape)
|
800 |
+
check_zero_intensities = f'df.shape after removing 0 mean values: {df.shape}'
|
801 |
+
else:
|
802 |
+
print("No zero intensity values.")
|
803 |
+
check_zero_intensities = " No zero intensity values found in the DataFrame."
|
804 |
+
|
805 |
+
|
806 |
+
|
807 |
+
# Get quantiles (5th, 50th, 95th)
|
808 |
+
# List of nucleus size percentiles to extract
|
809 |
+
#qs = [0.05,0.50,0.95]
|
810 |
+
|
811 |
+
|
812 |
+
|
813 |
+
#df["Nucleus_Size"].quantile(q=qs)
|
814 |
+
|
815 |
+
|
816 |
+
quality_control_df = df
|
817 |
+
quality_control_df.head()
|
818 |
+
|
819 |
+
# Function to perform quality checks
|
820 |
+
def perform_quality_checks(df, ls_samples, not_intensities):
|
821 |
+
results = {}
|
822 |
+
errors = []
|
823 |
+
# Check index
|
824 |
+
results['index'] = df.index
|
825 |
+
|
826 |
+
# Check shape
|
827 |
+
results['shape'] = df.shape
|
828 |
+
|
829 |
+
# Check for NaN entries
|
830 |
+
results['nan_entries'] = df.isnull().any().any()
|
831 |
+
|
832 |
+
# Remove rows with 0 mean intensity values
|
833 |
+
mean_intensity = df.loc[:, ~df.columns.isin(not_intensities)].mean(axis=1)
|
834 |
+
if (mean_intensity == 0).any():
|
835 |
+
df = df.loc[mean_intensity > 0, :]
|
836 |
+
results['zero_intensity_removal'] = f"Zero intensity entires are found and removed. Shape after removing: {df.shape}"
|
837 |
+
else:
|
838 |
+
results['zero_intensity_removal'] = "No zero intensity values found in the DataFrame."
|
839 |
+
|
840 |
+
return results
|
841 |
+
|
842 |
+
# Example usage of the function
|
843 |
+
quality_check_results = perform_quality_checks(df, ls_samples, not_intensities)
|
844 |
+
|
845 |
+
# Print results
|
846 |
+
for key, value in quality_check_results.items():
|
847 |
+
print(f"{key}: {value}")
|
848 |
+
|
849 |
+
|
850 |
+
# In[80]:
|
851 |
+
|
852 |
+
|
853 |
+
import panel as pn
|
854 |
+
import pandas as pd
|
855 |
+
|
856 |
+
def quality_check(file, not_intensities):
|
857 |
+
# Load the output file
|
858 |
+
df = file
|
859 |
+
|
860 |
+
# Check Index
|
861 |
+
check_index = check_format_ofindex(df.index)
|
862 |
+
|
863 |
+
# Check Shape
|
864 |
+
check_shape = df.shape
|
865 |
+
|
866 |
+
# Check for NaN entries
|
867 |
+
check_no_null = df.isnull().any().any()
|
868 |
+
|
869 |
+
mean_intensity = df.loc[:, ~df.columns.isin(not_intensities)].mean(axis=1)
|
870 |
+
if (mean_intensity == 0).any():
|
871 |
+
df = df.loc[mean_intensity > 0, :]
|
872 |
+
print("df.shape after removing 0 mean values: ", df.shape)
|
873 |
+
check_zero_intensities = f'df.shape after removing 0 mean values: {df.shape}'
|
874 |
+
else:
|
875 |
+
print("No zero intensity values found in the DataFrame.")
|
876 |
+
check_zero_intensities = "No zero intensities."
|
877 |
+
|
878 |
+
# Create a quality check results table
|
879 |
+
quality_check_results_table = pd.DataFrame({
|
880 |
+
'Check': ['Index', 'Shape', 'Check for NaN Entries', 'Check for Zero Intensities'],
|
881 |
+
'Result': [str(check_index), str(check_shape), str(check_no_null), check_zero_intensities]
|
882 |
+
})
|
883 |
+
|
884 |
+
# Create a quality check results component
|
885 |
+
quality_check_results_component = pn.Card(
|
886 |
+
pn.pane.DataFrame(quality_check_results_table),
|
887 |
+
title="Quality Control Results",
|
888 |
+
header_background="#2196f3",
|
889 |
+
header_color="white",
|
890 |
+
)
|
891 |
+
|
892 |
+
return quality_check_results_component
|
893 |
+
|
894 |
+
quantile_slider = pn.widgets.FloatSlider(name='Quantile', start=0.01, end=0.99, step=0.01, value=0.05)
|
895 |
+
|
896 |
+
|
897 |
+
# Function to calculate quantile values
|
898 |
+
def calculate_quantiles(quantile):
|
899 |
+
quantile_value_intensity = df["AF555_Cell_Intensity_Average"].quantile(q=[quantile, 0.50, 1 - quantile])
|
900 |
+
return quantile_value_intensity
|
901 |
+
|
902 |
+
# Function to create the Panel app
|
903 |
+
def create_app(quantile = quantile_slider.param.value):
|
904 |
+
quantiles = calculate_quantiles(quantile)
|
905 |
+
output = pd.DataFrame(quantiles)
|
906 |
+
|
907 |
+
# Create a Markdown widget to display the output
|
908 |
+
output_widget = pn.pane.DataFrame(output)
|
909 |
+
|
910 |
+
return output_widget
|
911 |
+
|
912 |
+
|
913 |
+
# Bind the create_app function to the quantile slider
|
914 |
+
quantile_output_app = pn.bind(create_app, quantile_slider.param.value)
|
915 |
+
#pn.Column(quantile_slider,quantile_output_app).servable()
|
916 |
+
|
917 |
+
# Function to create the line graph plot using Bokeh
|
918 |
+
def create_line_graph2(quantile):
|
919 |
+
# Calculate histogram
|
920 |
+
hist, edges = np.histogram(df['Nucleus_Size'], bins=30)
|
921 |
+
|
922 |
+
# Calculate the midpoints of bins for plotting
|
923 |
+
midpoints = (edges[:-1] + edges[1:]) / 2
|
924 |
+
|
925 |
+
# Calculate quantiles
|
926 |
+
qs = [quantile, 0.50, 1.00 - quantile]
|
927 |
+
quantiles = df['Nucleus_Size'].quantile(q=qs).values
|
928 |
+
|
929 |
+
# Create Bokeh line graph plot
|
930 |
+
p = figure(title='Frequency vs. Nucleus_Size',
|
931 |
+
x_axis_label='Nucleus_Size',
|
932 |
+
y_axis_label='Frequency',
|
933 |
+
width=800, height=400)
|
934 |
+
|
935 |
+
# Plotting histogram
|
936 |
+
p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:],
|
937 |
+
fill_color='skyblue', line_color='black', alpha=0.6)
|
938 |
+
|
939 |
+
# Plotting line graph
|
940 |
+
p.line(midpoints, hist, line_width=2, color='blue', alpha=0.7)
|
941 |
+
|
942 |
+
# Add quantile lines
|
943 |
+
for q in quantiles:
|
944 |
+
span = Span(location=q, dimension='height', line_color='red', line_dash='dashed', line_width=2)
|
945 |
+
p.add_layout(span)
|
946 |
+
p.add_layout(Label(x=q, y=max(hist), text=f'{q:.1f}', text_color='red'))
|
947 |
+
|
948 |
+
return p
|
949 |
+
|
950 |
+
# Bind the create_line_graph function to the quantile slider
|
951 |
+
nucleus_size_line_graph_with_histogram = pn.bind(create_line_graph2, quantile=quantile_slider.param.value)
|
952 |
+
|
953 |
+
# Layout the components in a Panel app
|
954 |
+
#nucleus_size_line_graph_with_histogram = pn.Column(create_line_graph2(quantile = quantile_slider.param.value))
|
955 |
+
#nucleus_size_line_graph_with_histogram.servable()
|
956 |
+
# Layout the components in a Panel app
|
957 |
+
plot1 = pn.Column(quantile_slider, pn.pane.Bokeh(nucleus_size_line_graph_with_histogram))
|
958 |
+
#plot1.servable()
|
959 |
+
|
960 |
+
#Removing cells based on nucleus size
|
961 |
+
|
962 |
+
quantile = quantile_slider.value
|
963 |
+
qs = [quantile, 0.50, 1.00 - quantile]
|
964 |
+
quantiles = df['Nucleus_Size'].quantile(q=qs).values
|
965 |
+
threshold = quantiles[2]
|
966 |
+
|
967 |
+
|
968 |
+
# In[89]:
|
969 |
+
|
970 |
+
|
971 |
+
print(threshold)
|
972 |
+
|
973 |
+
|
974 |
+
# In[90]:
|
975 |
+
|
976 |
+
|
977 |
+
|
978 |
+
import panel as pn
|
979 |
+
import pandas as pd
|
980 |
+
import numpy as np
|
981 |
+
from bokeh.plotting import figure
|
982 |
+
from bokeh.models import Span, Label
|
983 |
+
# Define the quantile slider
|
984 |
+
#quantile_slider = pn.widgets.FloatSlider(name='Quantile', start=0.01, end=0.99, step=0.01, value=0.05)
|
985 |
+
|
986 |
+
# Function to update the threshold and display number of cells removed
|
987 |
+
def update_threshold_and_display(quantile):
|
988 |
+
qs = [quantile, 0.50, 1.00 - quantile]
|
989 |
+
quantiles = df['Nucleus_Size'].quantile(q=qs).values
|
990 |
+
threshold = quantiles[2]
|
991 |
+
|
992 |
+
# Filter the DataFrame based on the new threshold
|
993 |
+
df_filtered = df.loc[(df['Nucleus_Size'] > 42) & (df['Nucleus_Size'] < threshold)]
|
994 |
+
|
995 |
+
# Calculate the number of cells removed
|
996 |
+
cells_before_filter = df.shape[0]
|
997 |
+
cells_after_filter = df_filtered.shape[0]
|
998 |
+
cells_removed = cells_before_filter - cells_after_filter
|
999 |
+
|
1000 |
+
# Display the results
|
1001 |
+
results = pn.Column(
|
1002 |
+
f"Number of cells before filtering: {cells_before_filter}",
|
1003 |
+
f"Number of cells after filtering on nucleus size: {cells_after_filter}",
|
1004 |
+
f"Number of cells removed: {cells_removed}"
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
return results
|
1008 |
+
|
1009 |
+
# Bind the update function to the quantile slider
|
1010 |
+
results_display = pn.bind(update_threshold_and_display, quantile_slider)
|
1011 |
+
|
1012 |
+
# Layout the components in a Panel app
|
1013 |
+
layout2 = results_display
|
1014 |
+
|
1015 |
+
|
1016 |
+
# In[91]:
|
1017 |
+
|
1018 |
+
|
1019 |
+
print("Number of cells before filtering :", df.shape[0])
|
1020 |
+
cells_before_filter = f"Number of cells before filtering :{df.shape[0]}"
|
1021 |
+
# Delete small cells and objects w/high AF555 Signal (RBCs)
|
1022 |
+
# We usually use the 95th percentile calculated during QC_EDA
|
1023 |
+
df = df.loc[(df['Nucleus_Size'] > 42 )]
|
1024 |
+
df = df.loc[(df['Nucleus_Size'] < threshold)]
|
1025 |
+
cells_after_filter_nucleus_shape = df.shape[0]
|
1026 |
+
print("Number of cells after filtering on nucleus size:", df.shape[0])
|
1027 |
+
|
1028 |
+
df = df.loc[(df['AF555_Cell_Intensity_Average'] < 2000)]
|
1029 |
+
print("Number of cells after filtering on AF555A ___ intensity:", df.shape[0])
|
1030 |
+
cells_after_filter_intensity_shape = df.shape[0]
|
1031 |
+
cells_after_filter_nucleus = f"Number of cells after filtering on nucleus size: {cells_after_filter_nucleus_shape}"
|
1032 |
+
cells_after_filter_intensity = f"Number of cells after filtering on AF555A ___ intensity: {cells_after_filter_intensity_shape}"
|
1033 |
+
|
1034 |
+
num_of_cell_removal_intensity = cells_after_filter_intensity
|
1035 |
+
|
1036 |
+
print(num_of_cell_removal_intensity )
|
1037 |
+
|
1038 |
+
num_of_cell_removal = pn.Column(cells_before_filter, cells_after_filter_nucleus)
|
1039 |
+
|
1040 |
+
|
1041 |
+
# Assuming you have a DataFrame 'df' with the intensity columns
|
1042 |
+
intensities = df.filter(like='Intensity').columns.tolist()
|
1043 |
+
|
1044 |
+
# Create a ColumnDataSource from the DataFrame
|
1045 |
+
source = ColumnDataSource(df)
|
1046 |
+
|
1047 |
+
# Function to calculate quantile values
|
1048 |
+
def calculate_quantiles(column, quantile):
|
1049 |
+
quantiles = df[column].quantile(q=[quantile, 0.50, 1 - quantile]).values
|
1050 |
+
return quantiles
|
1051 |
+
|
1052 |
+
# Create the dropdown menu
|
1053 |
+
column_dropdown = pn.widgets.Select(name='Select Column', options=intensities)
|
1054 |
+
|
1055 |
+
quantile_slider = pn.widgets.FloatSlider(name='Quantile', start=0.01, end=0.99, step=0.01, value=0.05)
|
1056 |
+
|
1057 |
+
|
1058 |
+
# Function to create the Bokeh plot
|
1059 |
+
def create_intensity_plot(column, quantile):
|
1060 |
+
quantiles = calculate_quantiles(column, quantile)
|
1061 |
+
hist, edges = np.histogram(df[column], bins = 30)
|
1062 |
+
# Calculate the midpoints of bins for plotting
|
1063 |
+
midpoints = (edges[:-1] + edges[1:]) / 2
|
1064 |
+
|
1065 |
+
# Create Bokeh plot
|
1066 |
+
p = figure(title=f'Distribution of {column} with Quantiles',
|
1067 |
+
x_axis_label=f'{column} Values',
|
1068 |
+
y_axis_label='Frequency',
|
1069 |
+
width=800, height=400)
|
1070 |
+
|
1071 |
+
|
1072 |
+
p.quad(top=hist, bottom=0, left=edges[:-1], right= edges[1:],
|
1073 |
+
fill_color='skyblue', line_color='black', alpha=0.7)
|
1074 |
+
|
1075 |
+
# Plotting line graph
|
1076 |
+
p.line(midpoints, hist, line_width=2, color='blue', alpha=0.7)
|
1077 |
+
|
1078 |
+
# Add quantile lines
|
1079 |
+
for q in quantiles:
|
1080 |
+
span = Span(location=q, dimension='height', line_color='red', line_dash='dashed', line_width=2)
|
1081 |
+
p.add_layout(span)
|
1082 |
+
p.add_layout(Label(x=q, y=max(hist), text=f'{q:.1f}', text_color='red'))
|
1083 |
+
|
1084 |
+
return p
|
1085 |
+
|
1086 |
+
|
1087 |
+
# Bind the create_plot function to the quantile slider, column dropdown, and button click
|
1088 |
+
marker_intensity_with_histogram = pn.bind(create_intensity_plot,column_dropdown.param.value, quantile_slider.param.value, watch=True)
|
1089 |
+
|
1090 |
+
# Create the button
|
1091 |
+
generate_plot_button = Button(label='Generate Plot', button_type='primary')
|
1092 |
+
|
1093 |
+
def update_plot(column, quantile):
|
1094 |
+
plot = create_intensity_plot(column, quantile)
|
1095 |
+
plot.renderers[0].data_source = source # Update the data source for the renderer
|
1096 |
+
return plot
|
1097 |
+
|
1098 |
+
#Display the dropdown menu, quantile slider, button, and plot
|
1099 |
+
#plot = update_plot(column_dropdown.param.value, quantile_slider.param.value)
|
1100 |
+
|
1101 |
+
def generate_plot(event):
|
1102 |
+
updated_plot = update_plot(column_dropdown.param.value, quantile_slider.param.value)
|
1103 |
+
#pn.Column(pn.Row(column_dropdown, generate_plot_button), quantile_slider, updated_plot).servable()
|
1104 |
+
|
1105 |
+
generate_plot_button.on_click(generate_plot)
|
1106 |
+
selected_marker_plot = pn.Column(pn.Row(pn.Column(column_dropdown, marker_intensity_with_histogram )))
|
1107 |
+
#pn.Column(pn.Row(pn.Column(column_dropdown, marker_intensity_with_histogram ), generate_plot_button)).servable()
|
1108 |
+
|
1109 |
+
import panel as pn
|
1110 |
+
import numpy as np
|
1111 |
+
import pandas as pd
|
1112 |
+
from bokeh.plotting import figure
|
1113 |
+
from bokeh.models import ColumnDataSource, Button, Span, Label
|
1114 |
+
|
1115 |
+
# Assuming you have a DataFrame 'df' with the intensity columns
|
1116 |
+
intensities = df.filter(like='Intensity').columns.tolist()
|
1117 |
+
|
1118 |
+
# Create a ColumnDataSource from the DataFrame
|
1119 |
+
source = ColumnDataSource(df)
|
1120 |
+
|
1121 |
+
# Function to calculate quantile values
|
1122 |
+
def calculate_quantiles(column, quantile):
|
1123 |
+
quantiles = df[column].quantile(q=[quantile, 0.50, 1 - quantile])
|
1124 |
+
return quantiles
|
1125 |
+
|
1126 |
+
|
1127 |
+
# In[105]:
|
1128 |
+
|
1129 |
+
|
1130 |
+
quantile_slider = pn.widgets.FloatSlider(name='Quantile', start=0.01, end=0.99, step=0.01, value=0.05)
|
1131 |
+
|
1132 |
+
|
1133 |
+
# Bind the create_line_graph function to the quantile slider
|
1134 |
+
#nucleus_size_line_graph = pn.bind(create_line_graph, quantile=quantile_slider.param.value)
|
1135 |
+
|
1136 |
+
# Layout the components in a Panel app
|
1137 |
+
#nucleus_size_graph = pn.Column(nucleus_size_line_graph)
|
1138 |
+
|
1139 |
+
|
1140 |
+
# In[106]:
|
1141 |
+
|
1142 |
+
|
1143 |
+
#df["CKs_Cytoplasm_Intensity_Average"].quantile(q=qs)
|
1144 |
+
|
1145 |
+
|
1146 |
+
# In[107]:
|
1147 |
+
|
1148 |
+
|
1149 |
+
len(intensities)
|
1150 |
+
if 'CKs_Cytoplasm_Intensity_Average' in intensities:
|
1151 |
+
print(1)
|
1152 |
+
|
1153 |
+
|
1154 |
+
# In[108]:
|
1155 |
+
|
1156 |
+
|
1157 |
+
df
|
1158 |
+
|
1159 |
+
|
1160 |
+
# In[109]:
|
1161 |
+
|
1162 |
+
|
1163 |
+
def calculate_cytoplasm_quantiles(column, quantile):
|
1164 |
+
# Print the columns of the DataFrame
|
1165 |
+
print("DataFrame columns:", df.columns)
|
1166 |
+
|
1167 |
+
# Check if the column exists in the DataFrame
|
1168 |
+
if column not in df.columns:
|
1169 |
+
raise KeyError(f"Column '{column}' does not exist in the DataFrame.")
|
1170 |
+
|
1171 |
+
quantiles = df[column].quantile(q=[quantile, 0.50, 1 - quantile])
|
1172 |
+
return quantiles
|
1173 |
+
|
1174 |
+
def create_cytoplasm_intensity_df(column, quantile):
|
1175 |
+
quantiles = calculate_cytoplasm_quantiles(column, quantile)
|
1176 |
+
output = pd.DataFrame(quantiles)
|
1177 |
+
return pn.pane.DataFrame(output)
|
1178 |
+
|
1179 |
+
# Bind the create_app function to the quantile slider
|
1180 |
+
cytoplasm_quantile_output_app = pn.bind(create_cytoplasm_intensity_df, column='CKs_Cytoplasm_Intensity_Average', quantile=quantile_slider.param.value)
|
1181 |
+
|
1182 |
+
pn.Column(quantile_slider, cytoplasm_quantile_output_app)
|
1183 |
+
|
1184 |
+
|
1185 |
+
# In[110]:
|
1186 |
+
|
1187 |
+
|
1188 |
+
def calculate_cytoplasm_quantiles(column, quantile):
|
1189 |
+
quantiles = df[column].quantile(q=[quantile, 0.50, 1 - quantile])
|
1190 |
+
return quantiles
|
1191 |
+
|
1192 |
+
def create_cytoplasm_intensity_df(column, quantile):
|
1193 |
+
quantiles = calculate_cytoplasm_quantiles(column, quantile)
|
1194 |
+
output = pd.DataFrame(quantiles)
|
1195 |
+
# Create a Dataframe widget to display the output
|
1196 |
+
output_widget = pn.pane.DataFrame(output)
|
1197 |
+
return output_widget
|
1198 |
+
|
1199 |
+
|
1200 |
+
# Bind the create_app function to the quantile slider
|
1201 |
+
cytoplasm_quantile_output_app = pn.bind(create_cytoplasm_intensity_df, column='CKs_Cytoplasm_Intensity_Average', quantile = quantile_slider.param.value)
|
1202 |
+
pn.Column(quantile_slider,cytoplasm_quantile_output_app)
|
1203 |
+
|
1204 |
+
|
1205 |
+
# ## I.5. COLUMNS OF INTERESTS
|
1206 |
+
|
1207 |
+
# In[111]:
|
1208 |
+
|
1209 |
+
|
1210 |
+
# Remove columns containing "DAPI"
|
1211 |
+
df = df[[x for x in df.columns.values if 'DAPI' not in x]]
|
1212 |
+
|
1213 |
+
print("Columns are now...")
|
1214 |
+
print([c for c in df.columns.values])
|
1215 |
+
|
1216 |
+
|
1217 |
+
# In[112]:
|
1218 |
+
|
1219 |
+
|
1220 |
+
# Create lists of full names and shortened names to use in plotting
|
1221 |
+
full_to_short_names, short_to_full_names = \
|
1222 |
+
shorten_feature_names(df.columns.values[~df.columns.isin(not_intensities)])
|
1223 |
+
|
1224 |
+
short_to_full_names
|
1225 |
+
|
1226 |
+
|
1227 |
+
# In[113]:
|
1228 |
+
|
1229 |
+
|
1230 |
+
# Save this data to a metadata file
|
1231 |
+
filename = os.path.join(metadata_dir, "full_to_short_column_names.csv")
|
1232 |
+
fh = open(filename, "w")
|
1233 |
+
fh.write("full_name,short_name\n")
|
1234 |
+
for k,v in full_to_short_names.items():
|
1235 |
+
fh.write(k + "," + v + "\n")
|
1236 |
+
|
1237 |
+
fh.close()
|
1238 |
+
print("The full_to_short_column_names.csv file was created !")
|
1239 |
+
|
1240 |
+
|
1241 |
+
# In[114]:
|
1242 |
+
|
1243 |
+
|
1244 |
+
# Save this data to a metadata file
|
1245 |
+
filename = os.path.join(metadata_dir, "short_to_full_column_names.csv")
|
1246 |
+
fh = open(filename, "w")
|
1247 |
+
fh.write("short_name,full_name\n")
|
1248 |
+
for k,v in short_to_full_names.items():
|
1249 |
+
fh.write(k + "," + v + "\n")
|
1250 |
+
|
1251 |
+
fh.close()
|
1252 |
+
print("The short_to_full_column_names.csv file was created !")
|
1253 |
+
|
1254 |
+
|
1255 |
+
# ## I.6. EXPOSURE TIME
|
1256 |
+
|
1257 |
+
# In[115]:
|
1258 |
+
|
1259 |
+
|
1260 |
+
#import the ashlar analysis file
|
1261 |
+
file_path = os.path.join(metadata_dir, 'combined_metadata.csv')
|
1262 |
+
ashlar_analysis = pd.read_csv(file_path)
|
1263 |
+
ashlar_analysis
|
1264 |
+
|
1265 |
+
|
1266 |
+
# In[116]:
|
1267 |
+
|
1268 |
+
|
1269 |
+
# Extracting and renaming columns
|
1270 |
+
new_df = ashlar_analysis[['Name', 'Cycle', 'ChannelIndex', 'ExposureTime']].copy()
|
1271 |
+
new_df.rename(columns={
|
1272 |
+
'Name': 'Target',
|
1273 |
+
'Cycle': 'Round',
|
1274 |
+
'ChannelIndex': 'Channel'
|
1275 |
+
}, inplace=True)
|
1276 |
+
|
1277 |
+
# Applying suffixes to the columns
|
1278 |
+
new_df['Round'] = 'R' + new_df['Round'].astype(str)
|
1279 |
+
new_df['Channel'] = 'c' + new_df['Channel'].astype(str)
|
1280 |
+
|
1281 |
+
# Save to CSV
|
1282 |
+
new_df.to_csv('Ashlar_Exposure_Time.csv', index=False)
|
1283 |
+
|
1284 |
+
# Print the new dataframe
|
1285 |
+
print(new_df)
|
1286 |
+
|
1287 |
+
|
1288 |
+
# In[117]:
|
1289 |
+
|
1290 |
+
|
1291 |
+
# Here, we want to end up with a data structure that incorporates metadata on each intensity marker column used in our big dataframe in an easy-to-use format.
|
1292 |
+
# This is going to include the full name of the intensity marker columns in the big data frame,
|
1293 |
+
# the corresponding round and channel,
|
1294 |
+
# the target protein (e.g., CD45),
|
1295 |
+
# and the segmentation localization information (cell, cytoplasm, nucleus)
|
1296 |
+
|
1297 |
+
# We can use this data structure to assign unique colors to all channels and rounds, for example, for use in later visualizations
|
1298 |
+
# Exposure_time file from ASHLAR analysis
|
1299 |
+
filename = "Exposure_Time.csv"
|
1300 |
+
filename = os.path.join(metadata_dir, filename)
|
1301 |
+
exp_df = pd.read_csv(filename)
|
1302 |
+
|
1303 |
+
print(exp_df)
|
1304 |
+
|
1305 |
+
# Verify file imported correctly
|
1306 |
+
# File length
|
1307 |
+
print("df's shape: ", exp_df.shape)
|
1308 |
+
# Headers
|
1309 |
+
expected_headers =['Round','Target','Exp','Channel']
|
1310 |
+
compare_headers(expected_headers, exp_df.columns.values, "Imported metadata file")
|
1311 |
+
|
1312 |
+
# Missingness
|
1313 |
+
if exp_df.isnull().any().any():
|
1314 |
+
print("\nexp_df has null value(s) in row(s):")
|
1315 |
+
print(exp_df[exp_df.isna().any(axis=1)])
|
1316 |
+
else:
|
1317 |
+
print("\nNo null values detected.")
|
1318 |
+
|
1319 |
+
|
1320 |
+
# In[118]:
|
1321 |
+
|
1322 |
+
|
1323 |
+
if len(exp_df['Target']) > len(exp_df['Target'].unique()):
|
1324 |
+
print("One or more non-unique Target values in exp_df. Currently not supported.")
|
1325 |
+
exp_df = exp_df.drop_duplicates(subset = 'Target').reindex()
|
1326 |
+
|
1327 |
+
|
1328 |
+
# In[119]:
|
1329 |
+
|
1330 |
+
|
1331 |
+
# sort exp_df by the values in the 'Target' column in ascending order and then retrieve the first few rows of the sorted df
|
1332 |
+
exp_df.sort_values(by = ['Target']).head()
|
1333 |
+
|
1334 |
+
|
1335 |
+
# In[120]:
|
1336 |
+
|
1337 |
+
|
1338 |
+
# Create lowercase version of target
|
1339 |
+
exp_df['target_lower'] = exp_df['Target'].str.lower()
|
1340 |
+
exp_df.head()
|
1341 |
+
|
1342 |
+
|
1343 |
+
# In[121]:
|
1344 |
+
|
1345 |
+
|
1346 |
+
# Create df that contains marker intensity columns in our df that aren't in not_intensities
|
1347 |
+
intensities = pd.DataFrame({'full_column':df.columns.values[~df.columns.isin(not_intensities)]})
|
1348 |
+
|
1349 |
+
intensities
|
1350 |
+
|
1351 |
+
|
1352 |
+
# In[122]:
|
1353 |
+
|
1354 |
+
|
1355 |
+
# Extract the marker information from the `full_column`, which corresponds to full column in big dataframe
|
1356 |
+
# Use regular expressions (regex) to isolate the part of the field that begins (^) with an alphanumeric value (W), and ends with an underscore (_)
|
1357 |
+
# '$' is end of line
|
1358 |
+
intensities['marker'] = intensities['full_column'].str.extract(r'([^\W_]+)')
|
1359 |
+
# convert to lowercase
|
1360 |
+
intensities['marker_lower'] = intensities['marker'].str.lower()
|
1361 |
+
|
1362 |
+
intensities
|
1363 |
+
|
1364 |
+
|
1365 |
+
# In[123]:
|
1366 |
+
|
1367 |
+
|
1368 |
+
# Subset the intensities df to exclude any column pertaining to DAPI
|
1369 |
+
intensities = intensities.loc[intensities['marker_lower'] != 'dapi']
|
1370 |
+
|
1371 |
+
intensities.head()
|
1372 |
+
|
1373 |
+
|
1374 |
+
# In[124]:
|
1375 |
+
|
1376 |
+
|
1377 |
+
# Merge the intensities andexp_df together to create metadata
|
1378 |
+
metadata = pd.merge(exp_df, intensities, how = 'left', left_on = 'target_lower',right_on = 'marker_lower')
|
1379 |
+
metadata = metadata.drop(columns = ['marker_lower'])
|
1380 |
+
metadata = metadata.dropna()
|
1381 |
+
|
1382 |
+
# Target is the capitalization from the Exposure_Time.csv
|
1383 |
+
# target_lower is Target in small caps
|
1384 |
+
# marker is the extracted first component of the full column in segmentation data, with corresponding capitalization
|
1385 |
+
metadata
|
1386 |
+
|
1387 |
+
|
1388 |
+
# In[125]:
|
1389 |
+
|
1390 |
+
|
1391 |
+
# Add a column to signify marker target localisation.
|
1392 |
+
# Use a lambda to determine segmented location of intensity marker column and update metadata accordingly
|
1393 |
+
# Using the add_metadata_location() function in my_modules.py
|
1394 |
+
metadata['localisation'] = metadata.apply(
|
1395 |
+
lambda row: add_metadata_location(row), axis = 1)
|
1396 |
+
|
1397 |
+
|
1398 |
+
# In[126]:
|
1399 |
+
|
1400 |
+
|
1401 |
+
mlid = metadata
|
1402 |
+
|
1403 |
+
|
1404 |
+
# In[127]:
|
1405 |
+
|
1406 |
+
|
1407 |
+
# Save this data structure to the metadata folder
|
1408 |
+
# don't want to add color in because that's better off treating color the same for round, channel, and sample
|
1409 |
+
filename = "marker_intensity_metadata.csv"
|
1410 |
+
filename = os.path.join(metadata_dir, filename)
|
1411 |
+
metadata.to_csv(filename, index = False)
|
1412 |
+
print("The marker_intensity_metadata.csv file was created !")
|
1413 |
+
|
1414 |
+
|
1415 |
+
|
1416 |
+
# ## I.7. COLORS WORKFLOW
|
1417 |
+
|
1418 |
+
# ### I.7.1. CHANNELS COLORS
|
1419 |
+
|
1420 |
+
|
1421 |
+
# we want colors that are categorical, since Channel is a non-ordered category (yes, they are numbered, but arbitrarily).
|
1422 |
+
# A categorical color palette will have dissimilar colors.
|
1423 |
+
# Get those unique colors
|
1424 |
+
if len(metadata.Channel.unique()) > 10:
|
1425 |
+
print("WARNING: There are more unique channel values than \
|
1426 |
+
there are colors to choose from. Select different palette, e.g., \
|
1427 |
+
continuous palette 'husl'.")
|
1428 |
+
channel_color_values = sb.color_palette("bright",n_colors = len(metadata.Channel.unique()))
|
1429 |
+
# chose 'colorblind' because it is categorical and we're unlikely to have > 10
|
1430 |
+
|
1431 |
+
# You can customize the colors for each channel here
|
1432 |
+
custom_colors = {
|
1433 |
+
'c2': 'lightgreen',
|
1434 |
+
'c3': 'tomato',
|
1435 |
+
'c4': 'pink',
|
1436 |
+
'c5': 'turquoise'
|
1437 |
+
}
|
1438 |
+
|
1439 |
+
custom_colors_values = sb.palplot(sb.color_palette([custom_colors.get(ch, 'blue') for ch in metadata.Channel.unique()]))
|
1440 |
+
|
1441 |
+
# Display those unique customs colors
|
1442 |
+
print("Unique channels are:", metadata.Channel.unique())
|
1443 |
+
sb.palplot(sb.color_palette(channel_color_values))
|
1444 |
+
|
1445 |
+
|
1446 |
+
# In[131]:
|
1447 |
+
|
1448 |
+
|
1449 |
+
# Function to create a palette plot with custom colors
|
1450 |
+
def create_palette_plot():
|
1451 |
+
# Get unique channels
|
1452 |
+
unique_channels = metadata.Channel.unique()
|
1453 |
+
|
1454 |
+
# Define custom colors for each channel
|
1455 |
+
custom_colors = {
|
1456 |
+
'c2': 'lightgreen',
|
1457 |
+
'c3': 'tomato',
|
1458 |
+
'c4': 'pink',
|
1459 |
+
'c5': 'turquoise'
|
1460 |
+
}
|
1461 |
+
|
1462 |
+
# Get custom colors for each channel
|
1463 |
+
colors = [custom_colors.get(ch, 'blue') for ch in unique_channels]
|
1464 |
+
|
1465 |
+
# Create a palette plot (palplot)
|
1466 |
+
palette_plot = sb.palplot(sb.color_palette(colors))
|
1467 |
+
channel_color_values = sb.color_palette("bright",n_colors = len(metadata.Channel.unique()))
|
1468 |
+
channel_color_values = sb.palplot(channel_color_values)
|
1469 |
+
return palette_plot, channel_color_values
|
1470 |
+
|
1471 |
+
|
1472 |
+
# Create the palette plot directly
|
1473 |
+
palette_plot = create_palette_plot()
|
1474 |
+
|
1475 |
+
# Define the Panel app layout
|
1476 |
+
app_palette_plot = pn.Column(
|
1477 |
+
pn.pane.Markdown("### Custom Color Palette"),
|
1478 |
+
palette_plot,
|
1479 |
+
)
|
1480 |
+
|
1481 |
+
# Function to create a palette plot with custom colors
|
1482 |
+
def create_palette_plot(custom_colors):
|
1483 |
+
# Get unique channels
|
1484 |
+
unique_channels = metadata.Channel.unique()
|
1485 |
+
|
1486 |
+
# Get custom colors for each channel
|
1487 |
+
colors = [custom_colors.get(ch, 'blue') for ch in unique_channels]
|
1488 |
+
|
1489 |
+
# Create a palette plot (palplot)
|
1490 |
+
palette_plot = sb.palplot(sb.color_palette(colors))
|
1491 |
+
|
1492 |
+
return palette_plot
|
1493 |
+
|
1494 |
+
# Define custom colors for each channel
|
1495 |
+
custom_colors = {
|
1496 |
+
'c2': 'lightgreen',
|
1497 |
+
'c3': 'tomato',
|
1498 |
+
'c4': 'pink',
|
1499 |
+
'c5': 'turquoise'
|
1500 |
+
}
|
1501 |
+
|
1502 |
+
# Display those unique customs colo
|
1503 |
+
print("Unique channels are:", metadata.Channel.unique())
|
1504 |
+
# Function to bind create_palette_plot
|
1505 |
+
app_palette_plot = create_palette_plot(custom_colors)
|
1506 |
+
|
1507 |
+
|
1508 |
+
#app_palette_plot.servable()
|
1509 |
+
|
1510 |
+
|
1511 |
+
# In[133]:
|
1512 |
+
|
1513 |
+
|
1514 |
+
# Store in a dictionary
|
1515 |
+
channel_color_dict = dict(zip(metadata.Channel.unique(), channel_color_values))
|
1516 |
+
channel_color_dict
|
1517 |
+
for k,v in channel_color_dict.items():
|
1518 |
+
channel_color_dict[k] = np.float64(v)
|
1519 |
+
|
1520 |
+
channel_color_dict
|
1521 |
+
|
1522 |
+
|
1523 |
+
# In[134]:
|
1524 |
+
|
1525 |
+
|
1526 |
+
color_df_channel = color_dict_to_df(channel_color_dict, "Channel")
|
1527 |
+
|
1528 |
+
# Save to file in metadatadirectory
|
1529 |
+
filename = "channel_color_data.csv"
|
1530 |
+
filename = os.path.join(metadata_dir, filename)
|
1531 |
+
color_df_channel.to_csv(filename, index = False)
|
1532 |
+
|
1533 |
+
color_df_channel
|
1534 |
+
|
1535 |
+
|
1536 |
+
# In[135]:
|
1537 |
+
|
1538 |
+
|
1539 |
+
# Legend of channel info only
|
1540 |
+
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
1541 |
+
g.axis('off')
|
1542 |
+
handles = []
|
1543 |
+
for item in channel_color_dict.keys():
|
1544 |
+
h = g.bar(0,0, color = channel_color_dict[item],
|
1545 |
+
label = item, linewidth =0)
|
1546 |
+
handles.append(h)
|
1547 |
+
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Channel'),
|
1548 |
+
# box_to_anchor=(10,10),
|
1549 |
+
# bbox_transform=plt.gcf().transFigure)
|
1550 |
+
|
1551 |
+
filename = "Channel_legend.png"
|
1552 |
+
filename = os.path.join(metadata_images_dir, filename)
|
1553 |
+
plt.savefig(filename, bbox_inches = 'tight')
|
1554 |
+
|
1555 |
+
# ### I.7.2. ROUNDS COLORS
|
1556 |
+
|
1557 |
+
|
1558 |
+
# we want colors that are sequential, since Round is an ordered category.
|
1559 |
+
# We can still generate colors that are easy to distinguish. Also, many of the categorical palettes cap at at about 10 or so unique colors, and repeat from there.
|
1560 |
+
# We do not want any repeats!
|
1561 |
+
round_color_values = sb.cubehelix_palette(
|
1562 |
+
len(metadata.Round.unique()), start=1, rot= -0.75, dark=0.19, light=.85, reverse=True)
|
1563 |
+
# round_color_values = sb.color_palette("cubehelix",n_colors = len(metadata.Round.unique()))
|
1564 |
+
# chose 'cubehelix' because it is sequential, and round is a continuous process
|
1565 |
+
# each color value is a tuple of three values: (R, G, B)
|
1566 |
+
print(metadata.Round.unique())
|
1567 |
+
|
1568 |
+
sb.palplot(sb.color_palette(round_color_values))
|
1569 |
+
|
1570 |
+
## TO-DO: write what these parameters mean
|
1571 |
+
|
1572 |
+
|
1573 |
+
# In[137]:
|
1574 |
+
|
1575 |
+
|
1576 |
+
# Store in a dictionary
|
1577 |
+
round_color_dict = dict(zip(metadata.Round.unique(), round_color_values))
|
1578 |
+
|
1579 |
+
for k,v in round_color_dict.items():
|
1580 |
+
round_color_dict[k] = np.float64(v)
|
1581 |
+
|
1582 |
+
round_color_dict
|
1583 |
+
|
1584 |
+
|
1585 |
+
# In[138]:
|
1586 |
+
|
1587 |
+
|
1588 |
+
color_df_round = color_dict_to_df(round_color_dict, "Round")
|
1589 |
+
|
1590 |
+
# Save to file in metadatadirectory
|
1591 |
+
filename = "round_color_data.csv"
|
1592 |
+
filename = os.path.join(metadata_dir, filename)
|
1593 |
+
color_df_round.to_csv(filename, index = False)
|
1594 |
+
|
1595 |
+
color_df_round
|
1596 |
+
|
1597 |
+
# Legend of round info only
|
1598 |
+
|
1599 |
+
round_legend = plt.figure(figsize = (1,1)).add_subplot(111)
|
1600 |
+
round_legend.axis('off')
|
1601 |
+
handles = []
|
1602 |
+
for item in round_color_dict.keys():
|
1603 |
+
h = round_legend.bar(0,0, color = round_color_dict[item],
|
1604 |
+
label = item, linewidth =0)
|
1605 |
+
handles.append(h)
|
1606 |
+
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Round'),
|
1607 |
+
# bbox_to_anchor=(10,10),
|
1608 |
+
# bbox_transform=plt.gcf().transFigure)
|
1609 |
+
|
1610 |
+
filename = "Round_legend.png"
|
1611 |
+
filename = os.path.join(metadata_images_dir, filename)
|
1612 |
+
plt.savefig(filename, bbox_inches = 'tight')
|
1613 |
+
|
1614 |
+
|
1615 |
+
# ### I.7.3. SAMPLES COLORS
|
1616 |
+
|
1617 |
+
# In[140]:
|
1618 |
+
|
1619 |
+
|
1620 |
+
# we want colors that are neither sequential nor categorical.
|
1621 |
+
# Categorical would be ideal if we could generate an arbitrary number of colors, but I do not think that we can.
|
1622 |
+
# Hense, we will choose `n` colors from a continuous palette. First we will generate the right number of colors. Later, we will assign TMA samples to gray.
|
1623 |
+
|
1624 |
+
# Get those unique colors
|
1625 |
+
color_values = sb.color_palette("husl",n_colors = len(ls_samples))#'HLS'
|
1626 |
+
# each color value is a tuple of three values: (R, G, B)
|
1627 |
+
|
1628 |
+
# Display those unique colors
|
1629 |
+
sb.palplot(sb.color_palette(color_values))
|
1630 |
+
|
1631 |
+
|
1632 |
+
# In[141]:
|
1633 |
+
|
1634 |
+
|
1635 |
+
TMA_samples = [s for s in df.Sample_ID.unique() if 'TMA' in s]
|
1636 |
+
TMA_color_values = sb.color_palette(n_colors = len(TMA_samples),palette = "gray")
|
1637 |
+
sb.palplot(sb.color_palette(TMA_color_values))
|
1638 |
+
|
1639 |
+
|
1640 |
+
# In[142]:
|
1641 |
+
|
1642 |
+
|
1643 |
+
# Store in a dictionary
|
1644 |
+
color_dict = dict()
|
1645 |
+
color_dict = dict(zip(df.Sample_ID.unique(), color_values))
|
1646 |
+
|
1647 |
+
# Replace all TMA samples' colors with gray
|
1648 |
+
i = 0
|
1649 |
+
for key in color_dict.keys():
|
1650 |
+
if 'TMA' in key:
|
1651 |
+
color_dict[key] = TMA_color_values[i]
|
1652 |
+
i +=1
|
1653 |
+
|
1654 |
+
color_dict
|
1655 |
+
|
1656 |
+
color_df_sample = color_dict_to_df(color_dict, "Sample_ID")
|
1657 |
+
|
1658 |
+
# Save to file in metadatadirectory
|
1659 |
+
filename = "sample_color_data.csv"
|
1660 |
+
filename = os.path.join(metadata_dir, filename)
|
1661 |
+
color_df_sample.to_csv(filename, index = False)
|
1662 |
+
|
1663 |
+
color_df_sample
|
1664 |
+
|
1665 |
+
|
1666 |
+
# Legend of sample info only
|
1667 |
+
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
1668 |
+
g.axis('off')
|
1669 |
+
handles = []
|
1670 |
+
for item in color_dict.keys():
|
1671 |
+
h = g.bar(0,0, color = color_dict[item],
|
1672 |
+
label = item, linewidth =0)
|
1673 |
+
handles.append(h)
|
1674 |
+
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Sample')
|
1675 |
+
|
1676 |
+
filename = "Sample_legend.png"
|
1677 |
+
filename = os.path.join(metadata_images_dir, filename)
|
1678 |
+
plt.savefig(filename, bbox_inches = 'tight')
|
1679 |
+
|
1680 |
+
|
1681 |
+
# ### I.7.4. CLUSTERS COLORS
|
1682 |
+
|
1683 |
+
'''if 'cluster' in df.columns:
|
1684 |
+
cluster_color_values = sb.color_palette("hls",n_colors = len(df.cluster.unique()))
|
1685 |
+
|
1686 |
+
#print(sorted(test_df.cluster.unique()))
|
1687 |
+
# Display those unique colors
|
1688 |
+
sb.palplot(sb.color_palette(cluster_color_values))
|
1689 |
+
|
1690 |
+
cluster_color_dict = dict(zip(sorted(test_df.cluster.unique()), cluster_color_values))
|
1691 |
+
print(cluster_color_dict)
|
1692 |
+
|
1693 |
+
# Create dataframe
|
1694 |
+
cluster_color_df = color_dict_to_df(cluster_color_dict, "cluster")
|
1695 |
+
cluster_color_df.head()
|
1696 |
+
|
1697 |
+
# Save to file in metadatadirectory
|
1698 |
+
filename = "cluster_color_data.csv"
|
1699 |
+
filename = os.path.join(metadata_dir, filename)
|
1700 |
+
cluster_color_df.to_csv(filename, index = False)
|
1701 |
+
|
1702 |
+
|
1703 |
+
|
1704 |
+
# Legend of cluster info only
|
1705 |
+
|
1706 |
+
if 'cluster' in df.columns:
|
1707 |
+
g = plt.figure(figsize = (1,1)).add_subplot(111)
|
1708 |
+
g.axis('off')
|
1709 |
+
handles = []
|
1710 |
+
for item in sorted(cluster_color_dict.keys()):
|
1711 |
+
h = g.bar(0,0, color = cluster_color_dict[item],
|
1712 |
+
label = item, linewidth =0)
|
1713 |
+
handles.append(h)
|
1714 |
+
first_legend = plt.legend(handles=handles, loc='upper right', title = 'Cluster'),
|
1715 |
+
|
1716 |
+
|
1717 |
+
filename = "Clustertype_legend.png"
|
1718 |
+
filename = os.path.join(metadata_images_dir, filename)
|
1719 |
+
plt.savefig(filename, bbox_inches = 'tight')'''
|
1720 |
+
|
1721 |
+
mlid.head()
|
1722 |
+
|
1723 |
+
|
1724 |
+
metadata
|
1725 |
+
|
1726 |
+
|
1727 |
+
|
1728 |
+
import io
|
1729 |
+
import panel as pn
|
1730 |
+
pn.extension()
|
1731 |
+
|
1732 |
+
file_input = pn.widgets.FileInput()
|
1733 |
+
|
1734 |
+
file_input
|
1735 |
+
|
1736 |
+
|
1737 |
+
def transform_data(variable, window, sigma):
|
1738 |
+
"""Calculates the rolling average and identifies outliers"""
|
1739 |
+
avg = metadata[variable].rolling(window=window).mean()
|
1740 |
+
residual = metadata[variable] - avg
|
1741 |
+
std = residual.rolling(window=window).std()
|
1742 |
+
outliers = np.abs(residual) > std * sigma
|
1743 |
+
return avg, avg[outliers]
|
1744 |
+
|
1745 |
+
|
1746 |
+
def get_plot(variable="Exp", window=30, sigma=10):
|
1747 |
+
"""Plots the rolling average and the outliers"""
|
1748 |
+
avg, highlight = transform_data(variable, window, sigma)
|
1749 |
+
return avg.hvplot(
|
1750 |
+
height=300, legend=False,
|
1751 |
+
) * highlight.hvplot.scatter(padding=0.1, legend=False)
|
1752 |
+
|
1753 |
+
|
1754 |
+
variable_widget = pn.widgets.Select(name="Target", value="Exp", options=list(metadata.columns))
|
1755 |
+
window_widget = pn.widgets.IntSlider(name="window", value=30, start=1, end=60)
|
1756 |
+
sigma_widget = pn.widgets.IntSlider(name="sigma", value=10, start=0, end=20)
|
1757 |
+
|
1758 |
+
app = pn.template.GoldenTemplate(
|
1759 |
+
site="Cyc-IF",
|
1760 |
+
title="Quality Control",
|
1761 |
+
main=[
|
1762 |
+
pn.Tabs(
|
1763 |
+
("Dataframes", pn.Column(
|
1764 |
+
pn.Row(csv_files_button,pn.bind(handle_click, csv_files_button.param.clicks)),
|
1765 |
+
pn.pane.Markdown("### The Dataframe uploaded:"), pn.pane.DataFrame(intial_dataframe),
|
1766 |
+
#pn.pane.Markdown("### The Exposure time DataFrame is :"), pn.pane.DataFrame(exp_df.head()),
|
1767 |
+
pn.pane.Markdown("### The DataFrame after merging CycIF data x metadata :"), pn.pane.DataFrame(merged_dataframe.head()),
|
1768 |
+
)),
|
1769 |
+
("Quality Control", pn.Column(
|
1770 |
+
quality_check(quality_control_df, not_intensities)
|
1771 |
+
#pn.pane.Markdown("### The Quality check results are:"), quality_check_results(check_shape, check_no_null, check_all_expected_files_present, check_zero_intensities)
|
1772 |
+
)),
|
1773 |
+
("Intensities", pn.Column(
|
1774 |
+
pn.pane.Markdown("### The Not Intensities DataFrame after processing is :"), pn.pane.DataFrame(not_intensities_df, height=250),
|
1775 |
+
pn.pane.Markdown("### Select Intensities to be included"), updated_intensities,
|
1776 |
+
#pn.pane.Markdown("### The Intensities DataFrame"), intensities_df,
|
1777 |
+
#pn.pane.Markdown("### The metadata obtained that specifies the localisation:"), pn.pane.DataFrame(mlid.head())
|
1778 |
+
)),
|
1779 |
+
("Plots", pn.Column(
|
1780 |
+
#pn.pane.Markdown(" ### Nucleus Size Distribution: "), pn.Row(nucleus_size_line_graph_with_histogram, num_of_cell_removal),
|
1781 |
+
#pn.pane.Markdown(" ### Nucleus Size Distribution: "), pn.Row(plot1,layout2),
|
1782 |
+
#pn.pane.Markdown("### Nucleus Distribution Plot:"), pn.Column(nucleus_size_plot, nucleus_size_graph),
|
1783 |
+
pn.pane.Markdown(" ### Intensity Average Plot:"), pn.Row(selected_marker_plot,num_of_cell_removal_intensity ),
|
1784 |
+
#pn.Column(pn.Column(column_dropdown, generate_plot_button), quantile_slider, plot),
|
1785 |
+
#pn.pane.Markdown("### Cytoplasm Intensity Plot:"), cytoplasm_intensity_plot,
|
1786 |
+
#pn.pane.Markdown("### AF555_Cell_Intensity_Average:"), quantile_output_app,
|
1787 |
+
#pn.pane.Markdown("### Distribution of AF555_Cell_Intensity_Average with Quantiles:"), quantile_intensity_plot)
|
1788 |
+
)),
|
1789 |
+
|
1790 |
+
),
|
1791 |
+
])
|
1792 |
+
|
1793 |
+
app.servable()
|
1794 |
+
|
1795 |
+
if __name__ == "__main__":
|
1796 |
+
pn.serve(app, port=5007)
|
my_modules.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import subprocess
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
import re
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
import seaborn as sb
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import matplotlib.colors as mplc
|
13 |
+
import subprocess
|
14 |
+
|
15 |
+
|
16 |
+
from scipy import signal
|
17 |
+
|
18 |
+
import plotly.figure_factory as ff
|
19 |
+
import plotly
|
20 |
+
import plotly.graph_objs as go
|
21 |
+
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
|
22 |
+
|
23 |
+
|
24 |
+
# This function takes in a dataframe, changes the names
|
25 |
+
# of the column in various ways, and returns the dataframe.
|
26 |
+
# For best accuracy and generalizability, the code uses
|
27 |
+
# regular expressions (regex) to find strings for replacement.
|
28 |
+
def apply_header_changes(df):
|
29 |
+
# remove lowercase x at beginning of name
|
30 |
+
df.columns = df.columns.str.replace("^x","")
|
31 |
+
# remove space at beginning of name
|
32 |
+
df.columns = df.columns.str.replace("^ ","")
|
33 |
+
# replace space with underscore
|
34 |
+
df.columns = df.columns.str.replace(" ","_")
|
35 |
+
# fix typos
|
36 |
+
df.columns = df.columns.str.replace("AF_AF","AF")
|
37 |
+
# change "Cell Id" into "ID"
|
38 |
+
df.columns = df.columns.str.replace("Cell Id","ID")
|
39 |
+
# if the ID is the index, change "Cell Id" into "ID"
|
40 |
+
df.index.name = "ID"
|
41 |
+
#
|
42 |
+
df.columns = df.columns.str.replace("","")
|
43 |
+
return df
|
44 |
+
|
45 |
+
def apply_df_changes(df):
|
46 |
+
# Remove "@1" after the ID in the index
|
47 |
+
df.index = df.index.str.replace(r'@1$', '')
|
48 |
+
return df
|
49 |
+
|
50 |
+
def compare_headers(expected, actual, name):
|
51 |
+
missing_actual = np.setdiff1d(expected, actual)
|
52 |
+
extra_actual = np.setdiff1d(actual, expected)
|
53 |
+
if len(missing_actual) > 0:
|
54 |
+
#print("WARNING: File '" + name + "' lacks the following expected header(s) after import header reformatting: \n"
|
55 |
+
# + str(missing_actual))
|
56 |
+
print("WARNING: File '" + name + "' lacks the following expected item(s): \n" + str(missing_actual))
|
57 |
+
if len(extra_actual) > 0:
|
58 |
+
#print("WARNING: '" + name + "' has the following unexpected header(s) after import header reformatting: \n"
|
59 |
+
# + str(extra_actual))
|
60 |
+
print("WARNING: '" + name + "' has the following unexpected item(s): \n" + str(extra_actual))
|
61 |
+
|
62 |
+
return None
|
63 |
+
|
64 |
+
|
65 |
+
def add_metadata_location(row):
|
66 |
+
fc = row['full_column'].lower()
|
67 |
+
if 'cytoplasm' in fc and 'cell' not in fc and 'nucleus' not in fc:
|
68 |
+
return 'cytoplasm'
|
69 |
+
elif 'cell' in fc and 'cytoplasm' not in fc and 'nucleus' not in fc:
|
70 |
+
return 'cell'
|
71 |
+
elif 'nucleus' in fc and 'cell' not in fc and 'cytoplasm' not in fc:
|
72 |
+
return 'nucleus'
|
73 |
+
else:
|
74 |
+
return 'unknown'
|
75 |
+
|
76 |
+
|
77 |
+
def get_perc(row, cell_type):
|
78 |
+
total = row['stroma'] + row['immune'] + row['cancer']+row['endothelial']
|
79 |
+
return round(row[cell_type]/total *100,1)
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
# Divide each marker (and its localisation) by the right exposure setting for each group of samples
|
84 |
+
def divide_exp_time(col, exp_col, metadata):
|
85 |
+
exp_time = metadata.loc[metadata['full_column'] == col.name, exp_col].values[0]
|
86 |
+
return col/exp_time
|
87 |
+
|
88 |
+
|
89 |
+
def do_background_sub(col, df, metadata):
|
90 |
+
#print(col.name)
|
91 |
+
location = metadata.loc[metadata['full_column'] == col.name, 'localisation'].values[0]
|
92 |
+
#print('location = ' + location)
|
93 |
+
channel = metadata.loc[metadata['full_column'] == col.name, 'Channel'].values[0]
|
94 |
+
#print('channel = ' + channel)
|
95 |
+
af_target = metadata.loc[
|
96 |
+
(metadata['Channel']==channel) \
|
97 |
+
& (metadata['localisation']==location) \
|
98 |
+
& (metadata['target_lower'].str.contains(r'^af\d{3}$')),\
|
99 |
+
'full_column'].values[0]
|
100 |
+
return col - df.loc[:,af_target]
|
101 |
+
|
102 |
+
|
103 |
+
"""
|
104 |
+
This function plots distributions. It takes in a string title (title), a list of
|
105 |
+
dataframes from which to plot (dfs), a list of dataframe names for the legend
|
106 |
+
(names), a list of the desired colors for the plotted samples (colors),
|
107 |
+
a string for the x-axis label (x_label), ```a float binwidth for histrogram (bin_size)```,
|
108 |
+
a boolean to show the legend or not (legend),
|
109 |
+
and the names of the marker(s) to plot (input_labels). If not specified,
|
110 |
+
the function will plot all markers in one plot. input_labels can either be a
|
111 |
+
single string, e.g., 'my_marker', or a list, e.g., ['my_marker1','my_marker2'].
|
112 |
+
|
113 |
+
The function will create a distribution plot and save it to png. It requires
|
114 |
+
a list of items not to be considered as markers when evaluating column names
|
115 |
+
(not_markers) to be in memory. It also requires a desired output location of
|
116 |
+
the files (output_dir) to already be in memory.
|
117 |
+
"""
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def make_distr_plot_per_sample(title, location, dfs, df_names, colors, x_label, legend, xlims = None, markers = ['all'],not_intensities = None):
|
122 |
+
### GET LIST OF MARKERS TO PLOT ###
|
123 |
+
# Get list of markers to plot if not specified by user, using columns in first df
|
124 |
+
# Writing function(parameter = FILLER) makes that parameter optional when user calls function,
|
125 |
+
# since it is given a default value!
|
126 |
+
if markers == ["all"]:
|
127 |
+
markers = [c for c in dfs[0].columns.values if c not in not_intensities]
|
128 |
+
elif not isinstance(markers, list):
|
129 |
+
markers = [markers]
|
130 |
+
# Make input labels a set to get only unique values, then put back into list
|
131 |
+
markers = list(set(markers))
|
132 |
+
|
133 |
+
### GET XLIMS ###
|
134 |
+
if xlims == None:
|
135 |
+
mins = [df.loc[:,markers].min().min() for df in dfs]
|
136 |
+
maxes = [df.loc[:,markers].max().max() for df in dfs]
|
137 |
+
xlims = [min(mins), max(maxes)]
|
138 |
+
if not isinstance(xlims, list):
|
139 |
+
print("Problem - xlmis not list. Exiting method...")
|
140 |
+
return None
|
141 |
+
### CHECK DATA CAN BE PLOTTED ###
|
142 |
+
# Check for data with only 1 unique value - this will cause error if plotted
|
143 |
+
group_labels = []
|
144 |
+
hist_data = []
|
145 |
+
# Iterate through all dataframes (dfs)
|
146 |
+
for i in range(len(dfs)):
|
147 |
+
# Iterate through all marker labels
|
148 |
+
for f in markers:
|
149 |
+
# If there is only one unique value in the marker data for this dataframe,
|
150 |
+
# you cannot plot a distribution plot. It gives you a linear algebra
|
151 |
+
# singular value matrix error
|
152 |
+
if dfs[i][f].nunique() != 1:
|
153 |
+
# Add df name and marker name to labels list
|
154 |
+
# If we have >1 df, we want to make clear
|
155 |
+
# which legend label is associated with which df
|
156 |
+
if len(df_names) > 1:
|
157 |
+
group_labels.append(df_names[i]+"_"+f)
|
158 |
+
else:
|
159 |
+
group_labels.append(f)
|
160 |
+
# add the data to the data list
|
161 |
+
hist_data.append(dfs[i][f])
|
162 |
+
# if no data had >1 unique values, there is nothing to plot
|
163 |
+
if len(group_labels) < 1:
|
164 |
+
print("No markers plotted - all were singular value. Names and markers were " + str(df_names) + ", " + str(markers))
|
165 |
+
return None
|
166 |
+
|
167 |
+
### TRANSFORM COLOR ITEMS TO CORRECT TYPE ###
|
168 |
+
if isinstance(colors[0], tuple):
|
169 |
+
colors = ['rgb' + str(color) for color in colors]
|
170 |
+
|
171 |
+
### PLOT DATA ###
|
172 |
+
# Create plot
|
173 |
+
fig = ff.create_distplot(hist_data, group_labels, bin_size=0.1,
|
174 |
+
#colors=colors, bin_size=bin_size, show_rug=False)#show_hist=False,
|
175 |
+
colors=colors, show_rug=False)
|
176 |
+
# Adjust title, font, background color, legend...
|
177 |
+
fig.update_layout(title_text=title, font=dict(size=18),
|
178 |
+
plot_bgcolor = 'white', showlegend = legend)#, legend_x = 3)
|
179 |
+
# Adjust opacity
|
180 |
+
fig.update_traces(opacity=0.6)
|
181 |
+
# Adjust x-axis parameters
|
182 |
+
fig.update_xaxes(title_text = x_label, showline=True, linewidth=2, linecolor='black',
|
183 |
+
tickfont=dict(size=18), range = xlims) # x lims was here
|
184 |
+
# Adjust y-axis parameters
|
185 |
+
fig.update_yaxes(title_text = "Kernel density estimate",showline=True, linewidth=1, linecolor='black',
|
186 |
+
tickfont=dict(size=18))
|
187 |
+
|
188 |
+
|
189 |
+
### SAVE/DISPLAY PLOT ###
|
190 |
+
# Save plot to HTML
|
191 |
+
# plotly.io.write_html(fig, file = output_dir + "/" + title + ".html")
|
192 |
+
# Plot in new tab
|
193 |
+
#plot(fig)
|
194 |
+
# Save to png
|
195 |
+
filename = os.path.join(location, title.replace(" ","_") + ".png")
|
196 |
+
fig.write_image(filename)
|
197 |
+
return None
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
|
203 |
+
# this could be changed to use recursion and make it 'smarter'
|
204 |
+
|
205 |
+
def shorten_feature_names(long_names):
|
206 |
+
name_dict = dict(zip(long_names,[n.split('_')[0] for n in long_names]))
|
207 |
+
names_lts, long_names, iteration = shorten_feature_names_helper(name_dict, long_names, 1)
|
208 |
+
# names_lts = names long-to-short
|
209 |
+
# names_stl = names stl
|
210 |
+
names_stl = {}
|
211 |
+
for n in names_lts.items():
|
212 |
+
names_stl[n[1]] = n[0]
|
213 |
+
return names_lts, names_stl
|
214 |
+
|
215 |
+
|
216 |
+
def shorten_feature_names_helper(name_dict, long_names, iteration):
|
217 |
+
#print("\nThis is iteration #"+str(iteration))
|
218 |
+
#print("name_dict is: " + str(name_dict))
|
219 |
+
#print("long_names is: " + str(long_names))
|
220 |
+
## If the number of unique nicknames == number of long names
|
221 |
+
## then the work here is done
|
222 |
+
#print('\nCompare lengths: ' + str(len(set(name_dict.values()))) + ", " + str(len(long_names)))
|
223 |
+
#print('set(name_dict.values()): ' + str(set(name_dict.values())))
|
224 |
+
#print('long_names: ' + str(long_names))
|
225 |
+
if len(set(name_dict.values())) == len(long_names):
|
226 |
+
#print('All done!')
|
227 |
+
return name_dict, long_names, iteration
|
228 |
+
|
229 |
+
## otherwise, if the number of unique nicknames is not
|
230 |
+
## equal to the number of long names (must be shorter than),
|
231 |
+
## then we need to find more unique names
|
232 |
+
iteration += 1
|
233 |
+
nicknames_set = set()
|
234 |
+
non_unique_nicknames = set()
|
235 |
+
# construct set of current nicknames
|
236 |
+
for long_name in long_names:
|
237 |
+
#print('long_name is ' + long_name + ' and non_unique_nicknames set is ' + str(non_unique_nicknames))
|
238 |
+
short_name = name_dict[long_name]
|
239 |
+
if short_name in nicknames_set:
|
240 |
+
non_unique_nicknames.add(short_name)
|
241 |
+
else:
|
242 |
+
nicknames_set.add(short_name)
|
243 |
+
#print('non_unique_nicknames are: ' + str(non_unique_nicknames))
|
244 |
+
|
245 |
+
# figure out all long names associated
|
246 |
+
# with the non-unique short names
|
247 |
+
trouble_long_names = set()
|
248 |
+
for long_name in long_names:
|
249 |
+
short_name = name_dict[long_name]
|
250 |
+
if short_name in non_unique_nicknames:
|
251 |
+
trouble_long_names.add(long_name)
|
252 |
+
|
253 |
+
#print('troublesome long names are: ' + str(trouble_long_names))
|
254 |
+
#print('name_dict: ' + str(name_dict))
|
255 |
+
# operate on all names that are associated with
|
256 |
+
# the non-unique short nicknames
|
257 |
+
for long_name in trouble_long_names:
|
258 |
+
#print('trouble long name is: ' + long_name)
|
259 |
+
#print('old nickname is: ' + name_dict[long_name])
|
260 |
+
name_dict[long_name] = '_'.join(long_name.split('_')[0:iteration])
|
261 |
+
#print('new nickname is: ' + name_dict[long_name])
|
262 |
+
shorten_feature_names_helper(name_dict, long_names, iteration)
|
263 |
+
return name_dict, long_names, iteration
|
264 |
+
|
265 |
+
|
266 |
+
def heatmap_function2(title,
|
267 |
+
data,
|
268 |
+
method, metric, cmap,
|
269 |
+
cbar_kws, xticklabels, save_loc,
|
270 |
+
row_cluster, col_cluster,
|
271 |
+
annotations = {'rows':[],'cols':[]}):
|
272 |
+
|
273 |
+
sb.set(font_scale= 6.0)
|
274 |
+
|
275 |
+
# Extract row and column mappings
|
276 |
+
row_mappings = []
|
277 |
+
col_mappings = []
|
278 |
+
for ann in annotations['rows']:
|
279 |
+
row_mappings.append(ann['mapping'])
|
280 |
+
for ann in annotations['cols']:
|
281 |
+
col_mappings.append(ann['mapping'])
|
282 |
+
# If empty lists, convert to None so seaborn accepts
|
283 |
+
# as the row_colors or col_colors objects
|
284 |
+
if len(row_mappings) == 0:
|
285 |
+
row_mappings = None
|
286 |
+
if len(col_mappings) == 0:
|
287 |
+
col_mappings = None
|
288 |
+
|
289 |
+
def heatmap_function(title,
|
290 |
+
data,
|
291 |
+
method, metric, cmap,
|
292 |
+
cbar_kws, xticklabels, save_loc,
|
293 |
+
row_cluster, col_cluster,
|
294 |
+
annotations = {'rows':[],'cols':[]}):
|
295 |
+
|
296 |
+
sb.set(font_scale= 2.0)
|
297 |
+
|
298 |
+
# Extract row and column mappings
|
299 |
+
row_mappings = []
|
300 |
+
col_mappings = []
|
301 |
+
for ann in annotations['rows']:
|
302 |
+
row_mappings.append(ann['mapping'])
|
303 |
+
for ann in annotations['cols']:
|
304 |
+
col_mappings.append(ann['mapping'])
|
305 |
+
# If empty lists, convert to None so seaborn accepts
|
306 |
+
# as the row_colors or col_colors objects
|
307 |
+
if len(row_mappings) == 0:
|
308 |
+
row_mappings = None
|
309 |
+
if len(col_mappings) == 0:
|
310 |
+
col_mappings = None
|
311 |
+
|
312 |
+
# Create clustermap
|
313 |
+
g = sb.clustermap(data = data,
|
314 |
+
robust = True,
|
315 |
+
method = method, metric = metric,
|
316 |
+
cmap = cmap,
|
317 |
+
row_cluster = row_cluster, col_cluster = col_cluster,
|
318 |
+
figsize = (40,30),
|
319 |
+
row_colors=row_mappings, col_colors=col_mappings,
|
320 |
+
yticklabels = False,
|
321 |
+
cbar_kws = cbar_kws,
|
322 |
+
xticklabels = xticklabels)
|
323 |
+
|
324 |
+
# To rotate slightly the x labels
|
325 |
+
plt.setp(g.ax_heatmap.xaxis.get_majorticklabels(), rotation=45)
|
326 |
+
|
327 |
+
# Add title
|
328 |
+
g.fig.suptitle(title, fontsize = 60.0)
|
329 |
+
|
330 |
+
#And now for the legends:
|
331 |
+
# iterate through 'rows', 'cols'
|
332 |
+
for ann_type in annotations.keys():
|
333 |
+
# iterate through each individual annotation feature
|
334 |
+
for ann in annotations[ann_type]:
|
335 |
+
color_dict = ann['dict']
|
336 |
+
handles = []
|
337 |
+
for item in color_dict.keys():
|
338 |
+
h = g.ax_col_dendrogram.bar(0,0, color = color_dict[item], label = item,
|
339 |
+
linewidth = 0)
|
340 |
+
handles.append(h)
|
341 |
+
legend = plt.legend(handles = handles, loc = ann['location'], title = ann['label'],
|
342 |
+
bbox_to_anchor=ann['bbox_to_anchor'],
|
343 |
+
bbox_transform=plt.gcf().transFigure)
|
344 |
+
ax = plt.gca().add_artist(legend)
|
345 |
+
|
346 |
+
# Save image
|
347 |
+
filename = os.path.join(save_loc, title.lower().replace(" ","_") + ".png")
|
348 |
+
g.savefig(filename)
|
349 |
+
|
350 |
+
return None
|
351 |
+
|
352 |
+
|
353 |
+
|
354 |
+
# sources -
|
355 |
+
#https://stackoverflow.com/questions/27988846/how-to-express-classes-on-the-axis-of-a-heatmap-in-seaborn
|
356 |
+
# https://matplotlib.org/3.1.1/tutorials/intermediate/legend_guide.html
|
357 |
+
|
358 |
+
|
359 |
+
def verify_line_no(filename, lines_read):
|
360 |
+
# Use Linux "wc -l" command to get the number of lines in the unopened file
|
361 |
+
wc = subprocess.check_output(['wc', '-l', filename]).decode("utf-8")
|
362 |
+
# Take that string, turn it into a list, extract the first item,
|
363 |
+
# and make that an int - this is the number of lines in the file
|
364 |
+
wc = int(wc.split()[0])
|
365 |
+
if lines_read != wc:
|
366 |
+
print("WARNING: '" + filename + "' has " + str(wc) +
|
367 |
+
" lines, but imported dataframe has "
|
368 |
+
+ str(lines_read) + " (including header).")
|
369 |
+
return None
|
370 |
+
|
371 |
+
|
372 |
+
def rgb_tuple_from_str(rgb_str):
|
373 |
+
rgb_str = rgb_str.replace("(","").replace(")","").replace(" ","")
|
374 |
+
rgb = list(map(float,rgb_str.split(",")))
|
375 |
+
return tuple(rgb)
|
376 |
+
|
377 |
+
def color_dict_to_df(cd, column_name):
|
378 |
+
df = pd.DataFrame.from_dict(cd, orient = 'index')
|
379 |
+
df['rgb'] = df.apply(lambda row: (np.float64(row[0]), np.float64(row[1]), np.float64(row[2])), axis = 1)
|
380 |
+
df = df.drop(columns = [0,1,2])
|
381 |
+
df['hex'] = df.apply(lambda row: mplc.to_hex(row['rgb']), axis = 1)
|
382 |
+
df[column_name] = df.index
|
383 |
+
return df
|
384 |
+
|
385 |
+
|
386 |
+
# p-values that are less than or equal to 0.05
|
387 |
+
def p_add_star(row):
|
388 |
+
m = [str('{:0.3e}'.format(m)) + "*"
|
389 |
+
if m <= 0.05 \
|
390 |
+
else str('{:0.3e}'.format(m))
|
391 |
+
for m in row ]
|
392 |
+
return pd.Series(m)
|
393 |
+
|
394 |
+
# assigns a specific number of asterisks based on the thresholds
|
395 |
+
def p_to_star(row):
|
396 |
+
output = []
|
397 |
+
for item in row:
|
398 |
+
if item <= 0.001:
|
399 |
+
stars = 3
|
400 |
+
elif item <= 0.01:
|
401 |
+
stars = 2
|
402 |
+
elif item <= 0.05:
|
403 |
+
stars = 1
|
404 |
+
else:
|
405 |
+
stars = 0
|
406 |
+
value = ''
|
407 |
+
for i in range(stars):
|
408 |
+
value += '*'
|
409 |
+
output.append(value)
|
410 |
+
return pd.Series(output)
|
411 |
+
|
412 |
+
|
413 |
+
|
414 |
+
def plot_gaussian_distributions(df):
|
415 |
+
# Initialize thresholds list to store all calculated thresholds
|
416 |
+
all_thresholds = []
|
417 |
+
|
418 |
+
# Iterate over all columns except the first one (assuming the first one is non-numeric or an index)
|
419 |
+
for column in df.columns:
|
420 |
+
# Extract the marker data
|
421 |
+
marker_data = df[column]
|
422 |
+
|
423 |
+
# Calculating mean and standard deviation for each marker
|
424 |
+
m_mean, m_std = np.mean(marker_data), np.std(marker_data)
|
425 |
+
|
426 |
+
# Generating x values for the Gaussian curve
|
427 |
+
x_vals = np.linspace(marker_data.min(), marker_data.max(), 100)
|
428 |
+
|
429 |
+
# Calculating Gaussian distribution curve
|
430 |
+
gaussian_curve = (1 / (m_std * np.sqrt(2 * np.pi))) * np.exp(-(x_vals - m_mean) ** 2 / (2 * m_std ** 2))
|
431 |
+
|
432 |
+
# Creating figure for Gaussian distribution for each marker
|
433 |
+
fig = go.Figure()
|
434 |
+
fig.add_trace(go.Scatter(x=x_vals, y=gaussian_curve, mode='lines', name=f'{column} Gaussian Distribution'))
|
435 |
+
fig.update_layout(title=f'Gaussian Distribution for {column} Marker')
|
436 |
+
|
437 |
+
# Calculating thresholds based on each marker's distribution
|
438 |
+
seuil_1sigma = m_mean + m_std
|
439 |
+
seuil_2sigma = m_mean + 2 * m_std
|
440 |
+
seuil_3sigma = m_mean + 3 * m_std
|
441 |
+
|
442 |
+
# Display the figures with thresholds
|
443 |
+
fig.add_shape(type='line', x0=seuil_1sigma, y0=0, x1=seuil_1sigma, y1=np.max(gaussian_curve),
|
444 |
+
line=dict(color='red', dash='dash'), name=f'Seuil 1σ: {seuil_1sigma:.2f}')
|
445 |
+
fig.add_shape(type='line', x0=seuil_2sigma, y0=0, x1=seuil_2sigma, y1=np.max(gaussian_curve),
|
446 |
+
line=dict(color='green', dash='dash'), name=f'Seuil 2σ: {seuil_2sigma:.2f}')
|
447 |
+
fig.add_shape(type='line', x0=seuil_3sigma, y0=0, x1=seuil_3sigma, y1=np.max(gaussian_curve),
|
448 |
+
line=dict(color='blue', dash='dash'), name=f'Seuil 3σ: {seuil_3sigma:.2f}')
|
449 |
+
|
450 |
+
# Add markers and values to the plot
|
451 |
+
fig.add_trace(go.Scatter(x=[seuil_1sigma, seuil_2sigma, seuil_3sigma],
|
452 |
+
y=[0, 0, 0],
|
453 |
+
mode='markers+text',
|
454 |
+
text=[f'{seuil_1sigma:.2f}', f'{seuil_2sigma:.2f}', f'{seuil_3sigma:.2f}'],
|
455 |
+
textposition="top center",
|
456 |
+
marker=dict(size=10, color=['red', 'green', 'blue']),
|
457 |
+
name='Threshold Values'))
|
458 |
+
|
459 |
+
fig.show()
|
460 |
+
|
461 |
+
# Append thresholds for each marker to the list
|
462 |
+
all_thresholds.append((column, seuil_1sigma, seuil_2sigma, seuil_3sigma)) # Include the column name
|
463 |
+
|
464 |
+
# Return thresholds for all markers
|
465 |
+
return all_thresholds
|
466 |
+
|
467 |
+
|
468 |
+
|
stored_variables.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_dir": "/Users/harshithakolipaka/Downloads/wetransfer_data-zip_2024-05-17_1431",
|
3 |
+
"set_path": "test",
|
4 |
+
"ls_samples": ["DD3S1.csv", "DD3S2.csv", "DD3S3.csv", "TMA.csv"],
|
5 |
+
"selected_metadata_files": ["Slide_B_DD1s1.one_1.tif.csv"]
|
6 |
+
}
|