Commit
Β·
e27ec68
1
Parent(s):
bce015a
update
Browse files
app.py
CHANGED
|
@@ -5,40 +5,31 @@ import spaces
|
|
| 5 |
import ctypes
|
| 6 |
import shlex
|
| 7 |
import torch
|
| 8 |
-
import argparse
|
| 9 |
print(f'gradio version: {gr.__version__}')
|
| 10 |
|
| 11 |
-
# Add command line argument parsing
|
| 12 |
-
parser = argparse.ArgumentParser(description='DiMeR Demo')
|
| 13 |
-
parser.add_argument('--ui_only', action='store_true', help='Only load the UI interface, do not initialize models (for UI debugging)')
|
| 14 |
-
args = parser.parse_args()
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
if not UI_ONLY_MODE:
|
| 20 |
-
subprocess.run(
|
| 21 |
-
shlex.split(
|
| 22 |
-
"pip install ./custom_diffusers --force-reinstall --no-deps"
|
| 23 |
-
)
|
| 24 |
)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
)
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
)
|
| 35 |
)
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
)
|
| 41 |
)
|
|
|
|
| 42 |
|
| 43 |
# Status variables for tracking if detailed prompt and image have been generated
|
| 44 |
generated_detailed_prompt = False
|
|
@@ -61,9 +52,7 @@ def install_cuda_toolkit():
|
|
| 61 |
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 62 |
print("==> finished installation")
|
| 63 |
|
| 64 |
-
|
| 65 |
-
if not UI_ONLY_MODE:
|
| 66 |
-
install_cuda_toolkit()
|
| 67 |
|
| 68 |
@spaces.GPU
|
| 69 |
def check_gpu():
|
|
@@ -74,17 +63,9 @@ def check_gpu():
|
|
| 74 |
os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
|
| 75 |
subprocess.run(['nvidia-smi']) # Test if CUDA is available
|
| 76 |
print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
|
| 77 |
-
print("Device count:", torch.cuda.device_count())
|
| 78 |
-
|
| 79 |
-
# test nvdiffrast
|
| 80 |
-
import nvdiffrast.torch as dr
|
| 81 |
-
dr.RasterizeCudaContext(device="cuda:0")
|
| 82 |
-
print("nvdiffrast initialized successfully")
|
| 83 |
|
| 84 |
-
|
| 85 |
-
# Only check GPU in non-UI debug mode
|
| 86 |
-
if not UI_ONLY_MODE:
|
| 87 |
-
check_gpu()
|
| 88 |
|
| 89 |
|
| 90 |
import base64
|
|
@@ -108,23 +89,19 @@ import random
|
|
| 108 |
import time
|
| 109 |
import numpy as np
|
| 110 |
|
| 111 |
-
|
| 112 |
-
if not UI_ONLY_MODE:
|
| 113 |
-
from video_render import render_video_from_obj
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
|
| 118 |
# Add logo file path and hyperlinks
|
| 119 |
LOGO_PATH = "app_assets/logo_temp_.png" # Update this to the actual path of your logo
|
| 120 |
ARXIV_LINK = "https://arxiv.org/pdf/2504.17670"
|
| 121 |
GITHUB_LINK = "https://github.com/lutao2021/DiMeR"
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
from models.ISOMER.scripts.utils import fix_vert_color_glb
|
| 127 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 128 |
|
| 129 |
TEMP_MESH_ADDRESS=''
|
| 130 |
|
|
@@ -166,11 +143,6 @@ def save_py3dmesh_with_trimesh_fast(meshes, save_glb_path=TEMP_MESH_ADDRESS, app
|
|
| 166 |
|
| 167 |
@spaces.GPU
|
| 168 |
def text_to_detailed(prompt, seed=None):
|
| 169 |
-
# test nvdiffrast
|
| 170 |
-
import nvdiffrast.torch as dr
|
| 171 |
-
dr.RasterizeCudaContext(device="cuda:0")
|
| 172 |
-
print("nvdiffrast initialized successfully")
|
| 173 |
-
|
| 174 |
print(f"torch.cuda.is_available():{torch.cuda.is_available()}")
|
| 175 |
# print(f"Before text_to_detailed: {torch.cuda.memory_allocated() / 1024**3} GB")
|
| 176 |
return k3d_wrapper.get_detailed_prompt(prompt, seed)
|
|
@@ -240,7 +212,7 @@ def image2mesh_main_(reference_3d_bundle_image, caption, seed, strength1=0.5, st
|
|
| 240 |
return gen_save_path, recon_mesh_path, mesh_cache
|
| 241 |
# return gen_save_path, recon_mesh_path
|
| 242 |
|
| 243 |
-
@spaces.GPU(duration=
|
| 244 |
def bundle_image_to_mesh(
|
| 245 |
gen_3d_bundle_image,
|
| 246 |
camera_radius=3.5,
|
|
@@ -328,8 +300,7 @@ def image_to_base64(image_path):
|
|
| 328 |
|
| 329 |
# def main():
|
| 330 |
|
| 331 |
-
|
| 332 |
-
torch.set_grad_enabled(False)
|
| 333 |
|
| 334 |
# Convert the logo image to base64
|
| 335 |
logo_base64 = image_to_base64(LOGO_PATH)
|
|
|
|
| 5 |
import ctypes
|
| 6 |
import shlex
|
| 7 |
import torch
|
|
|
|
| 8 |
print(f'gradio version: {gr.__version__}')
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
subprocess.run(
|
| 12 |
+
shlex.split(
|
| 13 |
+
"pip install ./custom_diffusers --force-reinstall --no-deps"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
)
|
| 15 |
+
)
|
| 16 |
+
subprocess.run(
|
| 17 |
+
shlex.split(
|
| 18 |
+
"pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt240/download.html"
|
| 19 |
)
|
| 20 |
+
)
|
| 21 |
|
| 22 |
+
subprocess.run(
|
| 23 |
+
shlex.split(
|
| 24 |
+
"pip install ./extension/nvdiffrast-0.3.1+torch-py3-none-any.whl --force-reinstall --no-deps"
|
|
|
|
| 25 |
)
|
| 26 |
+
)
|
| 27 |
|
| 28 |
+
subprocess.run(
|
| 29 |
+
shlex.split(
|
| 30 |
+
"pip install ./extension/renderutils_plugin-0.1.0-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
|
|
|
|
| 31 |
)
|
| 32 |
+
)
|
| 33 |
|
| 34 |
# Status variables for tracking if detailed prompt and image have been generated
|
| 35 |
generated_detailed_prompt = False
|
|
|
|
| 52 |
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 53 |
print("==> finished installation")
|
| 54 |
|
| 55 |
+
install_cuda_toolkit()
|
|
|
|
|
|
|
| 56 |
|
| 57 |
@spaces.GPU
|
| 58 |
def check_gpu():
|
|
|
|
| 63 |
os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
|
| 64 |
subprocess.run(['nvidia-smi']) # Test if CUDA is available
|
| 65 |
print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
|
| 66 |
+
print("Device count:", torch.cuda.device_count())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
check_gpu()
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
import base64
|
|
|
|
| 89 |
import time
|
| 90 |
import numpy as np
|
| 91 |
|
| 92 |
+
from video_render import render_video_from_obj
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
access_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 95 |
+
from pipeline.kiss3d_wrapper import init_wrapper_from_config, run_text_to_3d, run_image_to_3d, image2mesh_preprocess, image2mesh_main
|
| 96 |
|
| 97 |
# Add logo file path and hyperlinks
|
| 98 |
LOGO_PATH = "app_assets/logo_temp_.png" # Update this to the actual path of your logo
|
| 99 |
ARXIV_LINK = "https://arxiv.org/pdf/2504.17670"
|
| 100 |
GITHUB_LINK = "https://github.com/lutao2021/DiMeR"
|
| 101 |
|
| 102 |
+
k3d_wrapper = init_wrapper_from_config('./pipeline/pipeline_config/default.yaml')
|
| 103 |
+
from models.ISOMER.scripts.utils import fix_vert_color_glb
|
| 104 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
|
|
|
| 105 |
|
| 106 |
TEMP_MESH_ADDRESS=''
|
| 107 |
|
|
|
|
| 143 |
|
| 144 |
@spaces.GPU
|
| 145 |
def text_to_detailed(prompt, seed=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
print(f"torch.cuda.is_available():{torch.cuda.is_available()}")
|
| 147 |
# print(f"Before text_to_detailed: {torch.cuda.memory_allocated() / 1024**3} GB")
|
| 148 |
return k3d_wrapper.get_detailed_prompt(prompt, seed)
|
|
|
|
| 212 |
return gen_save_path, recon_mesh_path, mesh_cache
|
| 213 |
# return gen_save_path, recon_mesh_path
|
| 214 |
|
| 215 |
+
@spaces.GPU(duration=30)
|
| 216 |
def bundle_image_to_mesh(
|
| 217 |
gen_3d_bundle_image,
|
| 218 |
camera_radius=3.5,
|
|
|
|
| 300 |
|
| 301 |
# def main():
|
| 302 |
|
| 303 |
+
torch.set_grad_enabled(False)
|
|
|
|
| 304 |
|
| 305 |
# Convert the logo image to base64
|
| 306 |
logo_base64 = image_to_base64(LOGO_PATH)
|
models/DiMeR/models/DiMeR.py
CHANGED
|
@@ -86,11 +86,8 @@ class DiMeR(nn.Module):
|
|
| 86 |
|
| 87 |
@spaces.GPU
|
| 88 |
def init_flexicubes_geometry(self, device, fovy=50.0):
|
| 89 |
-
print(1)
|
| 90 |
camera = PerspectiveCamera(fovy=fovy, device=device)
|
| 91 |
-
print(2)
|
| 92 |
renderer = NeuralRender(device, camera_model=camera)
|
| 93 |
-
print(3)
|
| 94 |
self.geometry = FlexiCubesGeometry(
|
| 95 |
grid_res=self.grid_res,
|
| 96 |
scale=self.grid_scale,
|
|
|
|
| 86 |
|
| 87 |
@spaces.GPU
|
| 88 |
def init_flexicubes_geometry(self, device, fovy=50.0):
|
|
|
|
| 89 |
camera = PerspectiveCamera(fovy=fovy, device=device)
|
|
|
|
| 90 |
renderer = NeuralRender(device, camera_model=camera)
|
|
|
|
| 91 |
self.geometry = FlexiCubesGeometry(
|
| 92 |
grid_res=self.grid_res,
|
| 93 |
scale=self.grid_scale,
|
models/DiMeR/models/geometry/camera/perspective_camera.py
CHANGED
|
@@ -24,13 +24,9 @@ def projection(x=0.1, n=1.0, f=50.0, near_plane=None):
|
|
| 24 |
class PerspectiveCamera(Camera):
|
| 25 |
def __init__(self, fovy=49.0, device='cuda'):
|
| 26 |
super(PerspectiveCamera, self).__init__()
|
| 27 |
-
print(1.1)
|
| 28 |
self.device = device
|
| 29 |
-
print(1.2)
|
| 30 |
focal = np.tan(fovy / 180.0 * np.pi * 0.5)
|
| 31 |
-
print(1.3)
|
| 32 |
self.proj_mtx = torch.from_numpy(projection(x=focal, f=1000.0, n=1.0, near_plane=0.1)).to(self.device).unsqueeze(dim=0)
|
| 33 |
-
print(1.4)
|
| 34 |
|
| 35 |
def project(self, points_bxnx4):
|
| 36 |
out = torch.matmul(
|
|
|
|
| 24 |
class PerspectiveCamera(Camera):
|
| 25 |
def __init__(self, fovy=49.0, device='cuda'):
|
| 26 |
super(PerspectiveCamera, self).__init__()
|
|
|
|
| 27 |
self.device = device
|
|
|
|
| 28 |
focal = np.tan(fovy / 180.0 * np.pi * 0.5)
|
|
|
|
| 29 |
self.proj_mtx = torch.from_numpy(projection(x=focal, f=1000.0, n=1.0, near_plane=0.1)).to(self.device).unsqueeze(dim=0)
|
|
|
|
| 30 |
|
| 31 |
def project(self, points_bxnx4):
|
| 32 |
out = torch.matmul(
|
models/DiMeR/models/geometry/render/neural_render.py
CHANGED
|
@@ -72,15 +72,10 @@ class NeuralRender(Renderer):
|
|
| 72 |
@spaces.GPU
|
| 73 |
def __init__(self, device='cuda', camera_model=None):
|
| 74 |
super(NeuralRender, self).__init__()
|
| 75 |
-
print(2.1)
|
| 76 |
self.device = device
|
| 77 |
-
print(2.2)
|
| 78 |
self.ctx = dr.RasterizeCudaContext(device=device)
|
| 79 |
-
print(2.3)
|
| 80 |
self.projection_mtx = None
|
| 81 |
-
print(2.4)
|
| 82 |
self.camera = camera_model
|
| 83 |
-
print(2.5)
|
| 84 |
|
| 85 |
# ==============================================================================================
|
| 86 |
# pixel shader
|
|
|
|
| 72 |
@spaces.GPU
|
| 73 |
def __init__(self, device='cuda', camera_model=None):
|
| 74 |
super(NeuralRender, self).__init__()
|
|
|
|
| 75 |
self.device = device
|
|
|
|
| 76 |
self.ctx = dr.RasterizeCudaContext(device=device)
|
|
|
|
| 77 |
self.projection_mtx = None
|
|
|
|
| 78 |
self.camera = camera_model
|
|
|
|
| 79 |
|
| 80 |
# ==============================================================================================
|
| 81 |
# pixel shader
|
models/DiMeR/models/geometry/rep_3d/flexicubes_geometry.py
CHANGED
|
@@ -40,35 +40,26 @@ class FlexiCubesGeometry(Geometry):
|
|
| 40 |
self, grid_res=64, scale=2.0, device='cuda', renderer=None,
|
| 41 |
render_type='neural_render', args=None):
|
| 42 |
super(FlexiCubesGeometry, self).__init__()
|
| 43 |
-
print(3.1)
|
| 44 |
self.grid_res = grid_res
|
| 45 |
self.device = device
|
| 46 |
self.args = args
|
| 47 |
-
print(3.2)
|
| 48 |
self.fc = FlexiCubes(device, weight_scale=0.5)
|
| 49 |
-
print(3.3)
|
| 50 |
self.verts, self.indices = self.fc.construct_voxel_grid(grid_res)
|
| 51 |
-
print(3.4)
|
| 52 |
if isinstance(scale, list):
|
| 53 |
self.verts[:, 0] = self.verts[:, 0] * scale[0]
|
| 54 |
self.verts[:, 1] = self.verts[:, 1] * scale[1]
|
| 55 |
self.verts[:, 2] = self.verts[:, 2] * scale[1]
|
| 56 |
else:
|
| 57 |
self.verts = self.verts * scale
|
| 58 |
-
print(3.5)
|
| 59 |
|
| 60 |
all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2)
|
| 61 |
self.all_edges = torch.unique(all_edges, dim=0)
|
| 62 |
|
| 63 |
# Parameters used for fix boundary sdf
|
| 64 |
-
print(3.6)
|
| 65 |
self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device)
|
| 66 |
-
print(3.7)
|
| 67 |
self.renderer = renderer
|
| 68 |
self.render_type = render_type
|
| 69 |
-
print(3.8)
|
| 70 |
self.ctx = dr.RasterizeCudaContext(device=device)
|
| 71 |
-
print(3.9)
|
| 72 |
|
| 73 |
# self.verts.requires_grad_(True)
|
| 74 |
|
|
|
|
| 40 |
self, grid_res=64, scale=2.0, device='cuda', renderer=None,
|
| 41 |
render_type='neural_render', args=None):
|
| 42 |
super(FlexiCubesGeometry, self).__init__()
|
|
|
|
| 43 |
self.grid_res = grid_res
|
| 44 |
self.device = device
|
| 45 |
self.args = args
|
|
|
|
| 46 |
self.fc = FlexiCubes(device, weight_scale=0.5)
|
|
|
|
| 47 |
self.verts, self.indices = self.fc.construct_voxel_grid(grid_res)
|
|
|
|
| 48 |
if isinstance(scale, list):
|
| 49 |
self.verts[:, 0] = self.verts[:, 0] * scale[0]
|
| 50 |
self.verts[:, 1] = self.verts[:, 1] * scale[1]
|
| 51 |
self.verts[:, 2] = self.verts[:, 2] * scale[1]
|
| 52 |
else:
|
| 53 |
self.verts = self.verts * scale
|
|
|
|
| 54 |
|
| 55 |
all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2)
|
| 56 |
self.all_edges = torch.unique(all_edges, dim=0)
|
| 57 |
|
| 58 |
# Parameters used for fix boundary sdf
|
|
|
|
| 59 |
self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device)
|
|
|
|
| 60 |
self.renderer = renderer
|
| 61 |
self.render_type = render_type
|
|
|
|
| 62 |
self.ctx = dr.RasterizeCudaContext(device=device)
|
|
|
|
| 63 |
|
| 64 |
# self.verts.requires_grad_(True)
|
| 65 |
|