Commit
Β·
bce015a
1
Parent(s):
8a16430
debug
Browse files
app.py
CHANGED
|
@@ -74,11 +74,12 @@ def check_gpu():
|
|
| 74 |
os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
|
| 75 |
subprocess.run(['nvidia-smi']) # Test if CUDA is available
|
| 76 |
print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
|
| 77 |
-
print("Device count:", torch.cuda.device_count())
|
|
|
|
| 78 |
# test nvdiffrast
|
| 79 |
import nvdiffrast.torch as dr
|
| 80 |
dr.RasterizeCudaContext(device="cuda:0")
|
| 81 |
-
print("nvdiffrast initialized successfully")
|
| 82 |
|
| 83 |
|
| 84 |
# Only check GPU in non-UI debug mode
|
|
@@ -163,137 +164,114 @@ def save_py3dmesh_with_trimesh_fast(meshes, save_glb_path=TEMP_MESH_ADDRESS, app
|
|
| 163 |
fix_vert_color_glb(save_glb_path)
|
| 164 |
print(f"saving to {save_glb_path}")
|
| 165 |
|
| 166 |
-
|
| 167 |
-
def
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
return
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
#
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
reconstruction_stage2_steps = 50,
|
| 273 |
-
save_intermediate_results=False
|
| 274 |
-
):
|
| 275 |
-
global mesh_cache
|
| 276 |
-
print(f"Before bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
|
| 277 |
-
k3d_wrapper.recon_model.init_flexicubes_geometry("cuda:0", fovy=50.0)
|
| 278 |
-
print(f"init_flexicubes_geometry done")
|
| 279 |
-
# TODO: delete this later
|
| 280 |
-
k3d_wrapper.del_llm_model()
|
| 281 |
-
|
| 282 |
-
print(f"Before bundle_image_to_mesh after deleting llm model: {torch.cuda.memory_allocated() / 1024**3} GB")
|
| 283 |
-
|
| 284 |
-
gen_3d_bundle_image = torch.tensor(gen_3d_bundle_image).permute(2,0,1)/255
|
| 285 |
-
|
| 286 |
-
recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, camera_radius=camera_radius, lrm_render_radius=lrm_radius, isomer_radius=isomer_radius, save_intermediate_results=save_intermediate_results, reconstruction_stage1_steps=int(reconstruction_stage1_steps), reconstruction_stage2_steps=int(reconstruction_stage2_steps))
|
| 287 |
-
mesh_cache = recon_mesh_path
|
| 288 |
-
|
| 289 |
-
print(f"Mesh generated at: {mesh_cache}")
|
| 290 |
|
| 291 |
-
|
| 292 |
-
if not os.path.exists(mesh_cache):
|
| 293 |
-
print(f"Warning: Generated mesh file does not exist: {mesh_cache}")
|
| 294 |
-
return None, mesh_cache
|
| 295 |
-
|
| 296 |
-
return recon_mesh_path, mesh_cache
|
| 297 |
|
| 298 |
# _HEADER_=f"""
|
| 299 |
# <img src="{LOGO_PATH}">
|
|
|
|
| 74 |
os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
|
| 75 |
subprocess.run(['nvidia-smi']) # Test if CUDA is available
|
| 76 |
print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
|
| 77 |
+
print("Device count:", torch.cuda.device_count())
|
| 78 |
+
|
| 79 |
# test nvdiffrast
|
| 80 |
import nvdiffrast.torch as dr
|
| 81 |
dr.RasterizeCudaContext(device="cuda:0")
|
| 82 |
+
print("nvdiffrast initialized successfully")
|
| 83 |
|
| 84 |
|
| 85 |
# Only check GPU in non-UI debug mode
|
|
|
|
| 164 |
fix_vert_color_glb(save_glb_path)
|
| 165 |
print(f"saving to {save_glb_path}")
|
| 166 |
|
| 167 |
+
@spaces.GPU
|
| 168 |
+
def text_to_detailed(prompt, seed=None):
|
| 169 |
+
# test nvdiffrast
|
| 170 |
+
import nvdiffrast.torch as dr
|
| 171 |
+
dr.RasterizeCudaContext(device="cuda:0")
|
| 172 |
+
print("nvdiffrast initialized successfully")
|
| 173 |
+
|
| 174 |
+
print(f"torch.cuda.is_available():{torch.cuda.is_available()}")
|
| 175 |
+
# print(f"Before text_to_detailed: {torch.cuda.memory_allocated() / 1024**3} GB")
|
| 176 |
+
return k3d_wrapper.get_detailed_prompt(prompt, seed)
|
| 177 |
+
|
| 178 |
+
@spaces.GPU(duration=120)
|
| 179 |
+
def text_to_image(prompt, seed=None, strength=1.0,lora_scale=1.0, num_inference_steps=18, redux_hparam=None, init_image=None, **kwargs):
|
| 180 |
+
# subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
| 181 |
+
# print(f"Before text_to_image: {torch.cuda.memory_allocated() / 1024**3} GB")
|
| 182 |
+
# k3d_wrapper.flux_pipeline.enable_xformers_memory_efficient_attention()
|
| 183 |
+
k3d_wrapper.renew_uuid()
|
| 184 |
+
init_image = None
|
| 185 |
+
# if init_image_path is not None:
|
| 186 |
+
# init_image = Image.open(init_image_path)
|
| 187 |
+
subprocess.run(['nvidia-smi']) # Test if CUDA is available
|
| 188 |
+
with torch.no_grad():
|
| 189 |
+
result = k3d_wrapper.generate_3d_bundle_image_text(
|
| 190 |
+
prompt,
|
| 191 |
+
image=init_image,
|
| 192 |
+
strength=strength,
|
| 193 |
+
lora_scale=lora_scale,
|
| 194 |
+
num_inference_steps=num_inference_steps,
|
| 195 |
+
seed=int(seed) if seed is not None else None,
|
| 196 |
+
redux_hparam=redux_hparam,
|
| 197 |
+
save_intermediate_results=True,
|
| 198 |
+
**kwargs)
|
| 199 |
+
return result[-1]
|
| 200 |
+
|
| 201 |
+
@spaces.GPU(duration=120)
|
| 202 |
+
def image2mesh_preprocess_(input_image_, seed, use_mv_rgb=True):
|
| 203 |
+
global preprocessed_input_image
|
| 204 |
+
|
| 205 |
+
seed = int(seed) if seed is not None else None
|
| 206 |
+
|
| 207 |
+
# TODO: delete this later
|
| 208 |
+
# k3d_wrapper.del_llm_model()
|
| 209 |
+
|
| 210 |
+
input_image_save_path, reference_save_path, caption = image2mesh_preprocess(k3d_wrapper, input_image_, seed, use_mv_rgb)
|
| 211 |
+
|
| 212 |
+
preprocessed_input_image = Image.open(input_image_save_path)
|
| 213 |
+
return reference_save_path, caption
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
@spaces.GPU(duration=120)
|
| 217 |
+
def image2mesh_main_(reference_3d_bundle_image, caption, seed, strength1=0.5, strength2=0.95, enable_redux=True, use_controlnet=True, if_video=True):
|
| 218 |
+
subprocess.run(['nvidia-smi'])
|
| 219 |
+
global mesh_cache
|
| 220 |
+
seed = int(seed) if seed is not None else None
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
# TODO: delete this later
|
| 224 |
+
# k3d_wrapper.del_llm_model()
|
| 225 |
+
|
| 226 |
+
input_image = preprocessed_input_image
|
| 227 |
+
|
| 228 |
+
reference_3d_bundle_image = torch.tensor(reference_3d_bundle_image).permute(2,0,1)/255
|
| 229 |
+
|
| 230 |
+
gen_save_path, recon_mesh_path = image2mesh_main(k3d_wrapper, input_image, reference_3d_bundle_image, caption=caption, seed=seed, strength1=strength1, strength2=strength2, enable_redux=enable_redux, use_controlnet=use_controlnet)
|
| 231 |
+
mesh_cache = recon_mesh_path
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
if if_video:
|
| 235 |
+
video_path = recon_mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
|
| 236 |
+
render_video_from_obj(recon_mesh_path, video_path)
|
| 237 |
+
print(f"After bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
|
| 238 |
+
return gen_save_path, video_path, mesh_cache
|
| 239 |
+
else:
|
| 240 |
+
return gen_save_path, recon_mesh_path, mesh_cache
|
| 241 |
+
# return gen_save_path, recon_mesh_path
|
| 242 |
+
|
| 243 |
+
@spaces.GPU(duration=120)
|
| 244 |
+
def bundle_image_to_mesh(
|
| 245 |
+
gen_3d_bundle_image,
|
| 246 |
+
camera_radius=3.5,
|
| 247 |
+
lrm_radius = 3.5,
|
| 248 |
+
isomer_radius = 4.2,
|
| 249 |
+
reconstruction_stage1_steps = 0,
|
| 250 |
+
reconstruction_stage2_steps = 50,
|
| 251 |
+
save_intermediate_results=False
|
| 252 |
+
):
|
| 253 |
+
global mesh_cache
|
| 254 |
+
print(f"Before bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
|
| 255 |
+
k3d_wrapper.recon_model.init_flexicubes_geometry("cuda:0", fovy=50.0)
|
| 256 |
+
print(f"init_flexicubes_geometry done")
|
| 257 |
+
# TODO: delete this later
|
| 258 |
+
k3d_wrapper.del_llm_model()
|
| 259 |
+
|
| 260 |
+
print(f"Before bundle_image_to_mesh after deleting llm model: {torch.cuda.memory_allocated() / 1024**3} GB")
|
| 261 |
+
|
| 262 |
+
gen_3d_bundle_image = torch.tensor(gen_3d_bundle_image).permute(2,0,1)/255
|
| 263 |
+
|
| 264 |
+
recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, camera_radius=camera_radius, lrm_render_radius=lrm_radius, isomer_radius=isomer_radius, save_intermediate_results=save_intermediate_results, reconstruction_stage1_steps=int(reconstruction_stage1_steps), reconstruction_stage2_steps=int(reconstruction_stage2_steps))
|
| 265 |
+
mesh_cache = recon_mesh_path
|
| 266 |
+
|
| 267 |
+
print(f"Mesh generated at: {mesh_cache}")
|
| 268 |
+
|
| 269 |
+
# Check if file exists
|
| 270 |
+
if not os.path.exists(mesh_cache):
|
| 271 |
+
print(f"Warning: Generated mesh file does not exist: {mesh_cache}")
|
| 272 |
+
return None, mesh_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
+
return recon_mesh_path, mesh_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
# _HEADER_=f"""
|
| 277 |
# <img src="{LOGO_PATH}">
|