LAP-DEV commited on
Commit
940a6ff
·
verified ·
1 Parent(s): be77785

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ sdk: gradio
3
+ sdk_version: 5.22.0
4
+ ---
5
+ # Whisper-WebUI
6
+ A Gradio-based browser interface for [Whisper](https://github.com/openai/whisper)
7
+
8
+ # Features
9
+ - Select the Whisper implementation you want to use between:
10
+ - [openai/whisper](https://github.com/openai/whisper)
11
+ - [SYSTRAN/faster-whisper](https://github.com/SYSTRAN/faster-whisper) (used by default)
12
+ - [Vaibhavs10/insanely-fast-whisper](https://github.com/Vaibhavs10/insanely-fast-whisper)
13
+ - Generate transcriptions from various sources, including **files** & **microphone**
14
+ - Currently supported output formats: **csv**, **srt** & **txt**
15
+ - Speech to Text Translation:
16
+ - From other languages to English (This is Whisper's end-to-end speech-to-text translation feature)
17
+ - Translate transcription files using Facebook NLLB models
18
+ - Pre-processing audio input with [Silero VAD](https://github.com/snakers4/silero-vad)
19
+ - Post-processing with speaker diarization using the [pyannote](https://huggingface.co/pyannote/speaker-diarization-3.1) model:
20
+ - To download the pyannote model, you need to have a Huggingface token and manually accept their terms in the pages below:
21
+ 1. https://huggingface.co/pyannote/speaker-diarization-3.1
22
+ 2. https://huggingface.co/pyannote/segmentation-3.0
23
+
24
+ # Installation and Running
25
+
26
+ - ## Run Locally
27
+
28
+ ### Prerequisite
29
+ To run this WebUI, you need to have `git`, `python` version 3.8 ~ 3.10 & `FFmpeg`.<BR>If you're not using an Nvida GPU, or using a different `CUDA` version than 12.4, edit the file `requirements.txt` to match your environment.
30
+
31
+ Please follow the links below to install the necessary software:
32
+ - git : [https://git-scm.com/downloads](https://git-scm.com/downloads)
33
+ - python : [https://www.python.org/downloads/](https://www.python.org/downloads/)
34
+ - FFmpeg : [https://ffmpeg.org/download.html](https://ffmpeg.org/download.html)
35
+ - CUDA : [https://developer.nvidia.com/cuda-downloads](https://developer.nvidia.com/cuda-downloads)
36
+
37
+ After installing `FFmpeg`, make sure to **add** the `FFmpeg/bin` folder to your system `PATH`
38
+
39
+ ### Installation using the script files
40
+
41
+ 1. Download the the repository and extract its contents
42
+ 2. Run `install.bat` or `install.sh` to install dependencies (It will create a `venv` directory and install dependencies there)
43
+ 3. Start WebUI with `start-webui.bat` or `start-webui.sh` (It will run `python app.py` after activating the venv)
44
+
45
+ - ## Running with Docker
46
+
47
+ 1. Install and launch [Docker-Desktop](https://www.docker.com/products/docker-desktop/)
48
+
49
+ 2. Get the repository
50
+
51
+ 3. If needed, update the `docker-compose.yaml` to match your environment
52
+
53
+ 4. Docker commands:
54
+
55
+ Build the image ( Image is about ~7GB)
56
+ ```sh
57
+ docker compose build
58
+ ```
59
+
60
+ Run the container
61
+ ```sh
62
+ docker compose up
63
+ ```
64
+
65
+ 5. Connect to the WebUI with your browser at `http://localhost:7860`
66
+
67
+ # VRAM Usages
68
+ - This project is integrated with [faster-whisper](https://github.com/guillaumekln/faster-whisper) by default for better VRAM usage and transcription speed.<BR>According to faster-whisper, the efficiency of the optimized whisper model is as follows:
69
+ | Implementation | Precision | Beam size | Time | Max. GPU memory | Max. CPU memory |
70
+ |-------------------|-----------|-----------|-------|-----------------|-----------------|
71
+ | openai/whisper | fp16 | 5 | 4m30s | 11325MB | 9439MB |
72
+ | faster-whisper | fp16 | 5 | 54s | 4755MB | 3244MB |
73
+
74
+ - Whisper's original VRAM usage table for available models:
75
+ | Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
76
+ |:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
77
+ | tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x |
78
+ | base | 74 M | `base.en` | `base` | ~1 GB | ~16x |
79
+ | small | 244 M | `small.en` | `small` | ~2 GB | ~6x |
80
+ | medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x |
81
+ | large | 1550 M | N/A | `large` | ~10 GB | 1x |
82
+
83
+ Note: `.en` models are for English only, and you can use the `Translate to English` option from the other models