LAP-DEV commited on
Commit
be77785
·
verified ·
1 Parent(s): 3cd6503

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -83
README.md DELETED
@@ -1,83 +0,0 @@
1
- ---
2
- sdk: gradio
3
- sdk_version: 5.32.1
4
- ---
5
- # Whisper-WebUI
6
- A Gradio-based browser interface for [Whisper](https://github.com/openai/whisper)
7
-
8
- # Features
9
- - Select the Whisper implementation you want to use between:
10
- - [openai/whisper](https://github.com/openai/whisper)
11
- - [SYSTRAN/faster-whisper](https://github.com/SYSTRAN/faster-whisper) (used by default)
12
- - [Vaibhavs10/insanely-fast-whisper](https://github.com/Vaibhavs10/insanely-fast-whisper)
13
- - Generate transcriptions from various sources, including **files** & **microphone**
14
- - Currently supported output formats: **csv**, **srt** & **txt**
15
- - Speech to Text Translation:
16
- - From other languages to English (This is Whisper's end-to-end speech-to-text translation feature)
17
- - Translate transcription files using Facebook NLLB models
18
- - Pre-processing audio input with [Silero VAD](https://github.com/snakers4/silero-vad)
19
- - Post-processing with speaker diarization using the [pyannote](https://huggingface.co/pyannote/speaker-diarization-3.1) model:
20
- - To download the pyannote model, you need to have a Huggingface token and manually accept their terms in the pages below:
21
- 1. https://huggingface.co/pyannote/speaker-diarization-3.1
22
- 2. https://huggingface.co/pyannote/segmentation-3.0
23
-
24
- # Installation and Running
25
-
26
- - ## Run Locally
27
-
28
- ### Prerequisite
29
- To run this WebUI, you need to have `git`, `python` version 3.8 ~ 3.10 & `FFmpeg`.<BR>If you're not using an Nvida GPU, or using a different `CUDA` version than 12.4, edit the file `requirements.txt` to match your environment.
30
-
31
- Please follow the links below to install the necessary software:
32
- - git : [https://git-scm.com/downloads](https://git-scm.com/downloads)
33
- - python : [https://www.python.org/downloads/](https://www.python.org/downloads/)
34
- - FFmpeg : [https://ffmpeg.org/download.html](https://ffmpeg.org/download.html)
35
- - CUDA : [https://developer.nvidia.com/cuda-downloads](https://developer.nvidia.com/cuda-downloads)
36
-
37
- After installing `FFmpeg`, make sure to **add** the `FFmpeg/bin` folder to your system `PATH`
38
-
39
- ### Installation using the script files
40
-
41
- 1. Download the the repository and extract its contents
42
- 2. Run `install.bat` or `install.sh` to install dependencies (It will create a `venv` directory and install dependencies there)
43
- 3. Start WebUI with `start-webui.bat` or `start-webui.sh` (It will run `python app.py` after activating the venv)
44
-
45
- - ## Running with Docker
46
-
47
- 1. Install and launch [Docker-Desktop](https://www.docker.com/products/docker-desktop/)
48
-
49
- 2. Get the repository
50
-
51
- 3. If needed, update the `docker-compose.yaml` to match your environment
52
-
53
- 4. Docker commands:
54
-
55
- Build the image ( Image is about ~7GB)
56
- ```sh
57
- docker compose build
58
- ```
59
-
60
- Run the container
61
- ```sh
62
- docker compose up
63
- ```
64
-
65
- 5. Connect to the WebUI with your browser at `http://localhost:7860`
66
-
67
- # VRAM Usages
68
- - This project is integrated with [faster-whisper](https://github.com/guillaumekln/faster-whisper) by default for better VRAM usage and transcription speed.<BR>According to faster-whisper, the efficiency of the optimized whisper model is as follows:
69
- | Implementation | Precision | Beam size | Time | Max. GPU memory | Max. CPU memory |
70
- |-------------------|-----------|-----------|-------|-----------------|-----------------|
71
- | openai/whisper | fp16 | 5 | 4m30s | 11325MB | 9439MB |
72
- | faster-whisper | fp16 | 5 | 54s | 4755MB | 3244MB |
73
-
74
- - Whisper's original VRAM usage table for available models:
75
- | Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
76
- |:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
77
- | tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x |
78
- | base | 74 M | `base.en` | `base` | ~1 GB | ~16x |
79
- | small | 244 M | `small.en` | `small` | ~2 GB | ~6x |
80
- | medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x |
81
- | large | 1550 M | N/A | `large` | ~10 GB | 1x |
82
-
83
- Note: `.en` models are for English only, and you can use the `Translate to English` option from the other models