Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import spaces | |
tokenizer = None | |
model = None | |
def loadmodel(): | |
tokenizer = AutoTokenizer.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16") | |
model = AutoModelForCausalLM.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16", torch_dtype='auto', device_map='auto') | |
return tokenizer, model | |
def generate_text(prompt): | |
global tokenizer, model | |
if tokenizer is None or model is None: | |
tokenizer, model = loadmodel() | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(inputs.input_ids, max_length=100) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs="text", | |
outputs="text", | |
title="Meta-Llama-3.1-70B Text Generation", | |
description="Enter a prompt and generate text using Meta-Llama-3.1-70B.", | |
) | |
interface.launch() |