import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import spaces tokenizer = None model = None def loadmodel(): tokenizer = AutoTokenizer.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16") model = AutoModelForCausalLM.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16", torch_dtype='auto', device_map='auto') return tokenizer, model @spaces.GPU def generate_text(prompt): global tokenizer, model if tokenizer is None or model is None: tokenizer, model = loadmodel() inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(inputs.input_ids, max_length=100) return tokenizer.decode(outputs[0], skip_special_tokens=True) interface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="Meta-Llama-3.1-70B Text Generation", description="Enter a prompt and generate text using Meta-Llama-3.1-70B.", ) interface.launch()