File size: 8,210 Bytes
e648a11
532ae69
 
 
 
b04e505
532ae69
 
 
 
ed738dc
532ae69
 
 
 
 
 
 
 
b04e505
 
 
 
 
 
 
 
 
532ae69
 
 
 
 
 
 
b04e505
532ae69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70da6e
 
6e58fbc
 
24dbe3e
ed738dc
4619405
 
c70da6e
24dbe3e
 
 
 
532ae69
 
 
0a8b7e2
 
 
 
 
 
 
 
 
 
 
 
4619405
 
f72c8c5
0a8b7e2
 
 
 
 
 
 
 
 
 
 
 
4619405
 
 
c70da6e
532ae69
 
 
 
 
7850720
532ae69
 
b04e505
532ae69
f72c8c5
532ae69
468c1a7
532ae69
 
 
f72c8c5
532ae69
468c1a7
7850720
 
f72c8c5
3dd89fe
8de647b
 
 
 
 
3dd89fe
468c1a7
99b4c75
4619405
8cc2393
 
 
b04e505
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import gradio as gr
import pandas as pd
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import load_model
from datasets import load_dataset
from huggingface_hub import hf_hub_download
import numpy as np
import tensorflow as tf
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch

# Paths to the uploaded models
repo_id = "himanishprak23/lstm_rnn"
lstm_filename = "model_lstm_4.keras"  
rnn_filename = "model_rnn_1.keras"
lstm_model_path = hf_hub_download(repo_id=repo_id, filename=lstm_filename)
rnn_model_path = hf_hub_download(repo_id=repo_id, filename=rnn_filename)

# Specify the repository and the CSV file name
# Specify the repository and the CSV file name
repo_path = "himanishprak23/commentry_Data"
file_name = "df_commentary_new.csv"

# Load the dataset
dataset = load_dataset(repo_path, data_files=file_name, split='train')
data_text = dataset.to_pandas()


# Load the LSTM model
lstm_model = load_model(lstm_model_path)

# Load the RNN model
rnn_model = load_model(rnn_model_path)



# Check the embedding layer's input dimension for LSTM
embedding_layer = lstm_model.layers[0]
vocab_size = embedding_layer.input_dim

# Initialize and fit the tokenizer with limited vocabulary size
tokenizer = Tokenizer(num_words=vocab_size)
tokenizer.fit_on_texts(data_text['Modified_Commentary'])

# Define the maximum sequence length (adjust based on your model training)
max_sequence_length = 153

# Define the text generation function for LSTM
def generate_with_lstm(commentary_text, num_words):
    # Tokenize the input text
    input_sequence = tokenizer.texts_to_sequences([commentary_text])
    input_sequence = pad_sequences(input_sequence, maxlen=max_sequence_length)
    
    # Convert to tensor
    input_tensor = tf.convert_to_tensor(input_sequence)
    
    # Generate the next words
    generated_sequence = []
    for _ in range(num_words):
        # Get model predictions
        output = lstm_model.predict(input_tensor)
        
        # Get the index of the most probable next word
        next_word_index = np.argmax(output[0], axis=-1)
        
        # Add the predicted word to the sequence
        generated_sequence.append(next_word_index)
        
        # Append the predicted word to the input sequence
        input_sequence = np.append(input_sequence[0][1:], next_word_index).reshape(1, -1)
        input_tensor = tf.convert_to_tensor(input_sequence)
    
    # Convert indices back to words
    reverse_word_index = {value: key for key, value in tokenizer.word_index.items() if value < vocab_size}
    generated_words = [reverse_word_index.get(i, '') for i in generated_sequence]
    
    # Combine the input text with the generated words
    generated_text = commentary_text + ' ' + ' '.join(generated_words)
    
    return generated_text

# Define the text generation function for RNN
def generate_with_rnn(commentary_text, num_words):
    # Tokenize the input text
    input_sequence = tokenizer.texts_to_sequences([commentary_text])
    input_sequence = pad_sequences(input_sequence, maxlen=max_sequence_length)
    
    # Convert to tensor
    input_tensor = tf.convert_to_tensor(input_sequence)
    
    # Generate the next words
    generated_sequence = []
    for _ in range(num_words):
        # Get model predictions
        output = rnn_model.predict(input_tensor)
        
        # Get the index of the most probable next word
        next_word_index = np.argmax(output[0], axis=-1)
        
        # Add the predicted word to the sequence
        generated_sequence.append(next_word_index)
        
        # Append the predicted word to the input sequence
        input_sequence = np.append(input_sequence[0][1:], next_word_index).reshape(1, -1)
        input_tensor = tf.convert_to_tensor(input_sequence)
    
    # Convert indices back to words
    reverse_word_index = {value: key for key, value in tokenizer.word_index.items() if value < vocab_size}
    generated_words = [reverse_word_index.get(i, '') for i in generated_sequence]
    
    # Combine the input text with the generated words
    generated_text = commentary_text + ' ' + ' '.join(generated_words)
    
    return generated_text

# Load GPT-2 models and tokenizers
trained_tokenizer = GPT2Tokenizer.from_pretrained("Kumarkishalaya/GPT-2-next-word-prediction")
trained_model = GPT2LMHeadModel.from_pretrained("Kumarkishalaya/GPT-2-next-word-prediction")
untrained_tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
untrained_model = GPT2LMHeadModel.from_pretrained("gpt2")

device = "cuda" if torch.cuda.is_available() else "cpu"
trained_model.to(device)
untrained_model.to(device)

# Set pad_token to eos_token
trained_tokenizer.pad_token = trained_tokenizer.eos_token
untrained_tokenizer.pad_token = untrained_tokenizer.eos_token

# Define the text generation function for GPT-2
def generate_with_gpt2(commentary_text, max_length, temperature):
    # Generate text using the finetuned model
    inputs = trained_tokenizer(commentary_text, return_tensors="pt", padding=True)
    input_ids = inputs.input_ids.to(device)
    attention_mask = inputs.attention_mask.to(device)
    trained_output = trained_model.generate(
        input_ids, 
        max_length=max_length, 
        num_beams=5, 
        do_sample=True, 
        temperature=temperature, 
        attention_mask=attention_mask,
        pad_token_id=trained_tokenizer.eos_token_id
    )
    trained_text = trained_tokenizer.decode(trained_output[0], skip_special_tokens=True)
    
    # Generate text using the base model
    inputs = untrained_tokenizer(commentary_text, return_tensors="pt", padding=True)
    input_ids = inputs.input_ids.to(device)
    attention_mask = inputs.attention_mask.to(device)
    untrained_output = untrained_model.generate(
        input_ids, 
        max_length=max_length, 
        num_beams=5, 
        do_sample=True, 
        temperature=temperature, 
        attention_mask=attention_mask,
        pad_token_id=untrained_tokenizer.eos_token_id
    )
    untrained_text = untrained_tokenizer.decode(untrained_output[0], skip_special_tokens=True)
    
    return trained_text, untrained_text

# Define the combined function for Gradio interface
def generate_with_all_models(commentary_text, num_words, max_length, temperature):
    lstm_output = generate_with_lstm(commentary_text, num_words)
    rnn_output = generate_with_rnn(commentary_text, num_words)
    gpt2_finetuned_output, gpt2_base_output = generate_with_gpt2(commentary_text, max_length, temperature)
    return  rnn_output, lstm_output, gpt2_base_output, gpt2_finetuned_output

# Create the Gradio interface
iface = gr.Interface(
    fn=generate_with_all_models,
    inputs=[
        gr.Textbox(lines=2, placeholder="Enter commentary text here...", label="Prompt"),
        gr.Slider(minimum=10, maximum=100, step=1, value=50, label="Number of words to predict (LSTM/RNN)"),
        gr.Slider(minimum=10, maximum=100, value=50, step=1, label="Max Length (GPT-2)"),        
        gr.Slider(minimum=0.01, maximum=1.99, value=0.7, label="Temperature (GPT-2)")
    ],
    outputs=[
        gr.Textbox(label="RNN Model Output"),
        gr.Textbox(label="LSTM Model Output"),
        gr.Textbox(label="GPT-2 Base Model Output (not-finetuned)"), 
        gr.Textbox(label="GPT-2 Finetuned Model Output")
    ],
    examples=[
        ["no run, short ball, turning away", 50, 50, 0.7],
        ["jumps down the track and", 50, 50, 0.7],
        ["another leg bye call. On the pads", 50, 50, 0.7],
        ["That stays low, turns in, hits the pads", 50, 50, 0.7],
        ["goes flat, goes big", 50, 50, 0.7]
    ],
    title="Next word prediction with RNN, LSTM and GPT-2 Models",
    description="Start writing a cricket commentary and various models will try to continue it. Compare outputs from LSTM, RNN, and GPT-2 (base & finetuned) models. The RNN & LSTM models both have a single hidden layer trained for 50 epochs, the GPT-2 has been trained for 3 epochs. All models have been trained on 1000 rows of cricket commentary text (~80k word tokens)"
)

# Launch the app
if __name__ == "__main__":
    iface.launch()