Update app.py
Browse files
app.py
CHANGED
@@ -7,19 +7,30 @@ trained_model = GPT2LMHeadModel.from_pretrained("Kumarkishalaya/GPT-2-next-word-
|
|
7 |
untrained_model = GPT2Tokenizer.from_pretrained("gpt2")
|
8 |
untrained_tokenizer = ("gpt2")
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
10 |
|
11 |
def generate(commentary_text):
|
12 |
-
|
13 |
-
input_ids = input_ids
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Create Gradio interface
|
18 |
-
iface = gr.Interface(
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
|
24 |
# Launch the app
|
25 |
if __name__ == "__main__":
|
|
|
7 |
untrained_model = GPT2Tokenizer.from_pretrained("gpt2")
|
8 |
untrained_tokenizer = ("gpt2")
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
trained_model.to(device)
|
11 |
+
untrained_model.to(device)
|
12 |
|
13 |
def generate(commentary_text):
|
14 |
+
# Generate text using the trained model
|
15 |
+
input_ids = trained_tokenizer(commentary_text, return_tensors="pt").input_ids.to(device)
|
16 |
+
trained_output = trained_model.generate(input_ids, max_length=60, num_beams=5, do_sample=False)
|
17 |
+
trained_text = trained_tokenizer.decode(trained_output[0], skip_special_tokens=True)
|
18 |
+
|
19 |
+
# Generate text using the untrained model
|
20 |
+
input_ids = untrained_tokenizer(commentary_text, return_tensors="pt").input_ids.to(device)
|
21 |
+
untrained_output = untrained_model.generate(input_ids, max_length=60, num_beams=5, do_sample=False)
|
22 |
+
untrained_text = untrained_tokenizer.decode(untrained_output[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
return trained_text, untrained_text
|
25 |
|
26 |
# Create Gradio interface
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=generate,
|
29 |
+
inputs="text",
|
30 |
+
outputs=["text", "text"],
|
31 |
+
title="GPT-2 Text Generation",
|
32 |
+
description="start writing a cricket commentary and GPT-2 will continue it using both a trained and untrained model."
|
33 |
+
)
|
34 |
|
35 |
# Launch the app
|
36 |
if __name__ == "__main__":
|