刘虹雨
update
8ed2f16
# FLAME face model, modified from https://github.com/radekd91/emoca
import torch
import torch.nn as nn
import numpy as np
import pickle
import torch.nn.functional as F
from .lbs import lbs, batch_rodrigues, vertices2landmarks
def to_tensor(array, dtype=torch.float32):
if 'torch.tensor' not in str(type(array)):
return torch.tensor(array, dtype=dtype)
def to_np(array, dtype=np.float32):
if 'scipy.sparse' in str(type(array)):
array = array.todense()
return np.array(array, dtype=dtype)
class Struct(object):
def __init__(self, **kwargs):
for key, val in kwargs.items():
setattr(self, key, val)
def rot_mat_to_euler(rot_mats):
# Calculates rotation matrix to euler angles
# Careful for extreme cases of eular angles like [0.0, pi, 0.0]
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] +
rot_mats[:, 1, 0] * rot_mats[:, 1, 0])
return torch.atan2(-rot_mats[:, 2, 0], sy)
class FLAME(nn.Module):
"""
Given flame parameters this class generates a differentiable FLAME function
which outputs the a mesh and 2D/3D facial landmarks
"""
def __init__(self, config, flame_full=False):
super(FLAME, self).__init__()
print("creating the FLAME Decoder")
with open(config.flame_model_path, 'rb') as f:
# flame_model = Struct(**pickle.load(f, encoding='latin1'))
ss = pickle.load(f, encoding='latin1')
flame_model = Struct(**ss)
self.dtype = torch.float32
self.register_buffer('faces_tensor', to_tensor(to_np(flame_model.f, dtype=np.int64), dtype=torch.long))
# The vertices of the template model
self.register_buffer('v_template', to_tensor(to_np(flame_model.v_template), dtype=self.dtype))
# The shape components and expression
shapedirs = to_tensor(to_np(flame_model.shapedirs), dtype=self.dtype)
if not flame_full:
shapedirs = torch.cat([shapedirs[:, :, :config.n_shape], shapedirs[:, :, 300:300 + config.n_exp]], 2)
else:
shapedirs = torch.cat([shapedirs[:, :, :300], shapedirs[:, :, 300:400]], 2)
self.register_buffer('shapedirs', shapedirs)
# The pose components
num_pose_basis = flame_model.posedirs.shape[-1]
posedirs = np.reshape(flame_model.posedirs, [-1, num_pose_basis]).T
self.register_buffer('posedirs', to_tensor(to_np(posedirs), dtype=self.dtype))
#
self.register_buffer('J_regressor', to_tensor(to_np(flame_model.J_regressor), dtype=self.dtype))
parents = to_tensor(to_np(flame_model.kintree_table[0])).long()
parents[0] = -1
self.register_buffer('parents', parents)
self.register_buffer('lbs_weights', to_tensor(to_np(flame_model.weights), dtype=self.dtype))
# Fixing Eyeball and neck rotation
default_eyball_pose = torch.zeros([1, 6], dtype=self.dtype, requires_grad=False)
self.register_parameter('eye_pose', nn.Parameter(default_eyball_pose,
requires_grad=False))
default_neck_pose = torch.zeros([1, 3], dtype=self.dtype, requires_grad=False)
self.register_parameter('neck_pose', nn.Parameter(default_neck_pose,
requires_grad=False))
# Static and Dynamic Landmark embeddings for FLAME
lmk_embeddings = np.load(config.flame_lmk_embedding_path, allow_pickle=True, encoding='latin1')
lmk_embeddings = lmk_embeddings[()]
self.register_buffer('lmk_faces_idx', torch.tensor(lmk_embeddings['static_lmk_faces_idx'], dtype=torch.long))
self.register_buffer('lmk_bary_coords',
torch.tensor(lmk_embeddings['static_lmk_bary_coords'], dtype=self.dtype))
self.register_buffer('dynamic_lmk_faces_idx',
torch.tensor(lmk_embeddings['dynamic_lmk_faces_idx'], dtype=torch.long))
self.register_buffer('dynamic_lmk_bary_coords',
torch.tensor(lmk_embeddings['dynamic_lmk_bary_coords'], dtype=self.dtype))
self.register_buffer('full_lmk_faces_idx', torch.tensor(lmk_embeddings['full_lmk_faces_idx'], dtype=torch.long))
self.register_buffer('full_lmk_bary_coords',
torch.tensor(lmk_embeddings['full_lmk_bary_coords'], dtype=self.dtype))
neck_kin_chain = []
NECK_IDX = 1
curr_idx = torch.tensor(NECK_IDX, dtype=torch.long)
while curr_idx != -1:
neck_kin_chain.append(curr_idx)
curr_idx = self.parents[curr_idx]
self.register_buffer('neck_kin_chain', torch.stack(neck_kin_chain))
#----------------------------------
# clip rotation angles within a narrow range if needed
eye_limits=((-50, 50), (-50, 50), (-0.1, 0.1))
neck_limits=((-90, 90), (-60, 60), (-80, 80))
jaw_limits=((-5, 60), (-0.1, 0.1), (-0.1, 0.1))
global_limits=((-20, 20), (-90, 90), (-20, 20))
global_limits = torch.tensor(global_limits).float() / 180 * np.pi
self.register_buffer('global_limits', global_limits)
neck_limits = torch.tensor(neck_limits).float() / 180 * np.pi
self.register_buffer('neck_limits', neck_limits)
jaw_limits = torch.tensor(jaw_limits).float() / 180 * np.pi
self.register_buffer('jaw_limits', jaw_limits)
eye_limits = torch.tensor(eye_limits).float() / 180 * np.pi
self.register_buffer('eye_limits', eye_limits)
def _find_dynamic_lmk_idx_and_bcoords(self, pose, dynamic_lmk_faces_idx,
dynamic_lmk_b_coords,
neck_kin_chain, dtype=torch.float32):
"""
Selects the face contour depending on the reletive position of the head
Input:
vertices: N X num_of_vertices X 3
pose: N X full pose
dynamic_lmk_faces_idx: The list of contour face indexes
dynamic_lmk_b_coords: The list of contour barycentric weights
neck_kin_chain: The tree to consider for the relative rotation
dtype: Data type
return:
The contour face indexes and the corresponding barycentric weights
"""
batch_size = pose.shape[0]
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1,
neck_kin_chain)
rot_mats = batch_rodrigues(
aa_pose.view(-1, 3), dtype=dtype).view(batch_size, -1, 3, 3)
rel_rot_mat = torch.eye(3, device=pose.device,
dtype=dtype).unsqueeze_(dim=0).expand(batch_size, -1, -1)
for idx in range(len(neck_kin_chain)):
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat)
y_rot_angle = torch.round(
torch.clamp(rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi,
max=39)).to(dtype=torch.long)
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long)
mask = y_rot_angle.lt(-39).to(dtype=torch.long)
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle)
y_rot_angle = (neg_mask * neg_vals +
(1 - neg_mask) * y_rot_angle)
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx,
0, y_rot_angle)
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords,
0, y_rot_angle)
return dyn_lmk_faces_idx, dyn_lmk_b_coords
def _apply_rotation_limit(self, rotation, limit):
r_min, r_max = limit[:, 0].view(1, 3), limit[:, 1].view(1, 3)
diff = r_max - r_min
return r_min + (torch.tanh(rotation) + 1) / 2 * diff
def apply_rotation_limits(self, neck=None, jaw=None):
"""
method to call for applying rotation limits. Don't use _apply_rotation_limit() in other methods as this
might cause some bugs if we change which poses are affected by rotation limits. For this reason, in this method,
all affected poses are limited within one function so that if we add more restricted poses, they can just be
updated here
:param neck:
:param jaw:
:return:
"""
neck = self._apply_rotation_limit(neck, self.neck_limits) if neck is not None else None
jaw = self._apply_rotation_limit(jaw, self.jaw_limits) if jaw is not None else None
ret = [i for i in [neck, jaw] if i is not None]
return ret[0] if len(ret) == 1 else ret
def _revert_rotation_limit(self, rotation, limit):
"""
inverse function of _apply_rotation_limit()
from rotation angle vector (rodriguez) -> scalars from -inf ... inf
:param rotation: tensor of shape N x 3
:param limit: tensor of shape 3 x 2 (min, max)
:return:
"""
r_min, r_max = limit[:, 0].view(1, 3), limit[:, 1].view(1, 3)
diff = r_max - r_min
rotation = rotation.clone()
for i in range(3):
rotation[:, i] = torch.clip(rotation[:, i],
min=r_min[0, i] + diff[0, i] * .01,
max=r_max[0, i] - diff[0, i] * .01)
return torch.atanh((rotation - r_min) / diff * 2 - 1)
def revert_rotation_limits(self, neck, jaw):
"""
inverse function of apply_rotation_limits()
from rotation angle vector (rodriguez) -> scalars from -inf ... inf
:param rotation:
:param limit:
:return:
"""
neck = self._revert_rotation_limit(neck, self.neck_limits)
jaw = self._revert_rotation_limit(jaw, self.jaw_limits)
return neck, jaw
def get_neutral_joint_rotations(self):
res = {}
for name, limit in zip(['neck', 'jaw', 'global', 'eyes'],
[self.neck_limits, self.jaw_limits,
self.global_limits, self.eye_limits]):
r_min, r_max = limit[:, 0], limit[:, 1]
diff = r_max - r_min
res[name] = torch.atanh(-2 * r_min / diff - 1)
# assert (r_min + (torch.tanh(res[name]) + 1) / 2 * diff) < 1e-7
return res
def _pose2rot(self, pose):
rot_mats = batch_rodrigues(
pose.view(-1, 3), dtype=pose.dtype).view([pose.shape[0], 3, 3])
return rot_mats
def _vertices2landmarks(self, vertices, faces, lmk_faces_idx, lmk_bary_coords):
"""
Calculates landmarks by barycentric interpolation
Input:
vertices: torch.tensor NxVx3, dtype = torch.float32
The tensor of input vertices
faces: torch.tensor (N*F)x3, dtype = torch.long
The faces of the mesh
lmk_faces_idx: torch.tensor N X L, dtype = torch.long
The tensor with the indices of the faces used to calculate the
landmarks.
lmk_bary_coords: torch.tensor N X L X 3, dtype = torch.float32
The tensor of barycentric coordinates that are used to interpolate
the landmarks
Returns:
landmarks: torch.tensor NxLx3, dtype = torch.float32
The coordinates of the landmarks for each mesh in the batch
"""
# Extract the indices of the vertices for each face
# NxLx3
batch_size, num_verts = vertices.shape[:2]
lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view(
1, -1, 3).view(batch_size, lmk_faces_idx.shape[1], -1)
lmk_faces += torch.arange(batch_size, dtype=torch.long).view(-1, 1, 1).to(
device=vertices.device) * num_verts
lmk_vertices = vertices.view(-1, 3)[lmk_faces]
landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords])
return landmarks
def seletec_3d68(self, vertices):
landmarks3d = vertices2landmarks(vertices, self.faces_tensor,
self.full_lmk_faces_idx.repeat(vertices.shape[0], 1),
self.full_lmk_bary_coords.repeat(vertices.shape[0], 1, 1))
return landmarks3d
def forward(self, shape_params=None, expression_params=None, pose_params=None, eye_pose_params=None, use_rotation_limits=False):
"""
Input:
shape_params: N X number of shape parameters
expression_params: N X number of expression parameters
pose_params: N X number of pose parameters (6)
return:d
vertices: N X V X 3
landmarks: N X number of landmarks X 3
"""
batch_size = shape_params.shape[0]
if pose_params is None:
pose_params = self.eye_pose.expand(batch_size, -1)
if eye_pose_params is None:
eye_pose_params = self.eye_pose.expand(batch_size, -1)
betas = torch.cat([shape_params, expression_params], dim=1)
if use_rotation_limits:
neck_pose, jaw_pose = self.apply_rotation_limits(neck=pose_params[:, :3], jaw=pose_params[:, 3:])
pose_params = torch.cat([neck_pose,jaw_pose],dim=-1)
eye_pose_params = torch.cat([self._apply_rotation_limit(eye_pose_params[:, :3], self.eye_limits),
self._apply_rotation_limit(eye_pose_params[:, 3:], self.eye_limits)], dim=1)
# set global rotation to zero
full_pose = torch.cat(
[torch.zeros_like(pose_params[:, :3]), pose_params[:, :3], pose_params[:, 3:], eye_pose_params], dim=1)
# full_pose = torch.cat(
# [pose_params[:, :3], torch.zeros_like(pose_params[:, :3]), pose_params[:, 3:], eye_pose_params], dim=1)
template_vertices = self.v_template.unsqueeze(0).expand(batch_size, -1, -1)
vertices, J_transformed = lbs(betas, full_pose, template_vertices,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, dtype=self.dtype)
lmk_faces_idx = self.lmk_faces_idx.unsqueeze(dim=0).expand(batch_size, -1)
lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).expand(batch_size, -1, -1)
dyn_lmk_faces_idx, dyn_lmk_bary_coords = self._find_dynamic_lmk_idx_and_bcoords(
full_pose, self.dynamic_lmk_faces_idx,
self.dynamic_lmk_bary_coords,
self.neck_kin_chain, dtype=self.dtype)
lmk_faces_idx = torch.cat([dyn_lmk_faces_idx, lmk_faces_idx], 1)
lmk_bary_coords = torch.cat([dyn_lmk_bary_coords, lmk_bary_coords], 1)
landmarks2d = vertices2landmarks(vertices, self.faces_tensor,
lmk_faces_idx,
lmk_bary_coords)
bz = vertices.shape[0]
landmarks3d = vertices2landmarks(vertices, self.faces_tensor,
self.full_lmk_faces_idx.repeat(bz, 1),
self.full_lmk_bary_coords.repeat(bz, 1, 1))
return vertices, landmarks2d, landmarks3d, J_transformed
class FLAMETex(nn.Module):
"""
current FLAME texture:
https://github.com/TimoBolkart/TF_FLAME/blob/ade0ab152300ec5f0e8555d6765411555c5ed43d/sample_texture.py#L64
tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/albedoModel2020_FLAME_albedoPart.npz'
## adapted from BFM
tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/FLAME_albedo_from_BFM.npz'
"""
def __init__(self, config):
super(FLAMETex, self).__init__()
if config.tex_type == 'BFM':
mu_key = 'MU'
pc_key = 'PC'
n_pc = 199
tex_path = config.tex_path
tex_space = np.load(tex_path)
texture_mean = tex_space[mu_key].reshape(1, -1)
texture_basis = tex_space[pc_key].reshape(-1, n_pc)
elif config.tex_type == 'FLAME':
mu_key = 'mean'
pc_key = 'tex_dir'
n_pc = 200
tex_path = config.flame_tex_path
tex_space = np.load(tex_path)
texture_mean = tex_space[mu_key].reshape(1, -1) / 255.
texture_basis = tex_space[pc_key].reshape(-1, n_pc) / 255.
else:
print('texture type ', config.tex_type, 'not exist!')
exit()
n_tex = config.n_tex
num_components = texture_basis.shape[1]
texture_mean = torch.from_numpy(texture_mean).float()[None, ...]
texture_basis = torch.from_numpy(texture_basis[:, :n_tex]).float()[None, ...]
self.register_buffer('texture_mean', texture_mean)
self.register_buffer('texture_basis', texture_basis)
def forward(self, texcode):
texture = self.texture_mean + (self.texture_basis * texcode[:, None, :]).sum(-1)
texture = texture.reshape(texcode.shape[0], 512, 512, 3).permute(0, 3, 1, 2)
texture = F.interpolate(texture, [256, 256])
texture = texture[:, [2, 1, 0], :, :]
return texture
class FLAMETex_trainable(nn.Module):
"""
current FLAME texture:
https://github.com/TimoBolkart/TF_FLAME/blob/ade0ab152300ec5f0e8555d6765411555c5ed43d/sample_texture.py#L64
tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/albedoModel2020_FLAME_albedoPart.npz'
## adapted from BFM
tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/FLAME_albedo_from_BFM.npz'
"""
def __init__(self, config):
super(FLAMETex_trainable, self).__init__()
tex_params = config.tex_params
texture_model = np.load(config.tex_path)
num_tex_pc = texture_model['PC'].shape[-1]
tex_shape = texture_model['MU'].shape
MU = torch.from_numpy(np.reshape(texture_model['MU'], (1, -1))).float()[None, ...]
PC = torch.from_numpy(np.reshape(texture_model['PC'], (-1, num_tex_pc))[:, :tex_params]).float()[None, ...]
self.register_buffer('MU', MU)
self.register_buffer('PC', PC)
if 'specMU' in texture_model.files:
specMU = torch.from_numpy(np.reshape(texture_model['specMU'], (1, -1))).float()[None, ...]
specPC = torch.from_numpy(np.reshape(texture_model['specPC'], (-1, num_tex_pc)))[:, :tex_params].float()[
None, ...]
self.register_buffer('specMU', specMU)
self.register_buffer('specPC', specPC)
self.isspec = True
else:
self.isspec = False
self.register_parameter('PC_correction', nn.Parameter(torch.zeros_like(PC)))
def forward(self, texcode):
diff_albedo = self.MU + (self.PC * texcode[:, None, :]).sum(-1) + (
self.PC_correction * texcode[:, None, :]).sum(-1)
if self.isspec:
spec_albedo = self.specMU + (self.specPC * texcode[:, None, :]).sum(-1)
texture = (diff_albedo + spec_albedo) # torch.pow(0.6*(diff_albedo + spec_albedo), 1.0/2.2)
else:
texture = diff_albedo
texture = texture.reshape(texcode.shape[0], 512, 512, 3).permute(0, 3, 1, 2)
texture = F.interpolate(texture, [256, 256])
texture = texture[:, [2, 1, 0], :, :]
return texture