File size: 19,436 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# FLAME face model, modified from https://github.com/radekd91/emoca
import torch
import torch.nn as nn
import numpy as np
import pickle
import torch.nn.functional as F

from .lbs import lbs, batch_rodrigues, vertices2landmarks


def to_tensor(array, dtype=torch.float32):
    if 'torch.tensor' not in str(type(array)):
        return torch.tensor(array, dtype=dtype)


def to_np(array, dtype=np.float32):
    if 'scipy.sparse' in str(type(array)):
        array = array.todense()
    return np.array(array, dtype=dtype)


class Struct(object):
    def __init__(self, **kwargs):
        for key, val in kwargs.items():
            setattr(self, key, val)


def rot_mat_to_euler(rot_mats):
    # Calculates rotation matrix to euler angles
    # Careful for extreme cases of eular angles like [0.0, pi, 0.0]

    sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] +
                    rot_mats[:, 1, 0] * rot_mats[:, 1, 0])
    return torch.atan2(-rot_mats[:, 2, 0], sy)


class FLAME(nn.Module):
    """
    Given flame parameters this class generates a differentiable FLAME function
    which outputs the a mesh and 2D/3D facial landmarks
    """

    def __init__(self, config, flame_full=False):
        super(FLAME, self).__init__()
        print("creating the FLAME Decoder")
        with open(config.flame_model_path, 'rb') as f:
            # flame_model = Struct(**pickle.load(f, encoding='latin1'))
            ss = pickle.load(f, encoding='latin1')
            flame_model = Struct(**ss)

        self.dtype = torch.float32
        self.register_buffer('faces_tensor', to_tensor(to_np(flame_model.f, dtype=np.int64), dtype=torch.long))
        # The vertices of the template model
        self.register_buffer('v_template', to_tensor(to_np(flame_model.v_template), dtype=self.dtype)) 
        # The shape components and expression
        shapedirs = to_tensor(to_np(flame_model.shapedirs), dtype=self.dtype)
        if not flame_full:
            shapedirs = torch.cat([shapedirs[:, :, :config.n_shape], shapedirs[:, :, 300:300 + config.n_exp]], 2)
        else:
            shapedirs = torch.cat([shapedirs[:, :, :300], shapedirs[:, :, 300:400]], 2)
        self.register_buffer('shapedirs', shapedirs)
        # The pose components
        num_pose_basis = flame_model.posedirs.shape[-1]
        posedirs = np.reshape(flame_model.posedirs, [-1, num_pose_basis]).T
        self.register_buffer('posedirs', to_tensor(to_np(posedirs), dtype=self.dtype)) 
        #
        self.register_buffer('J_regressor', to_tensor(to_np(flame_model.J_regressor), dtype=self.dtype))
        parents = to_tensor(to_np(flame_model.kintree_table[0])).long()
        parents[0] = -1
        self.register_buffer('parents', parents)
        self.register_buffer('lbs_weights', to_tensor(to_np(flame_model.weights), dtype=self.dtype))

        # Fixing Eyeball and neck rotation
        default_eyball_pose = torch.zeros([1, 6], dtype=self.dtype, requires_grad=False)
        self.register_parameter('eye_pose', nn.Parameter(default_eyball_pose,
                                                         requires_grad=False))
        default_neck_pose = torch.zeros([1, 3], dtype=self.dtype, requires_grad=False)
        self.register_parameter('neck_pose', nn.Parameter(default_neck_pose,
                                                          requires_grad=False))

        # Static and Dynamic Landmark embeddings for FLAME
        lmk_embeddings = np.load(config.flame_lmk_embedding_path, allow_pickle=True, encoding='latin1')
        lmk_embeddings = lmk_embeddings[()]
        self.register_buffer('lmk_faces_idx', torch.tensor(lmk_embeddings['static_lmk_faces_idx'], dtype=torch.long))
        self.register_buffer('lmk_bary_coords',
                             torch.tensor(lmk_embeddings['static_lmk_bary_coords'], dtype=self.dtype))
        self.register_buffer('dynamic_lmk_faces_idx',
                             torch.tensor(lmk_embeddings['dynamic_lmk_faces_idx'], dtype=torch.long))
        self.register_buffer('dynamic_lmk_bary_coords',
                             torch.tensor(lmk_embeddings['dynamic_lmk_bary_coords'], dtype=self.dtype))
        self.register_buffer('full_lmk_faces_idx', torch.tensor(lmk_embeddings['full_lmk_faces_idx'], dtype=torch.long))
        self.register_buffer('full_lmk_bary_coords',
                             torch.tensor(lmk_embeddings['full_lmk_bary_coords'], dtype=self.dtype))

        neck_kin_chain = []
        NECK_IDX = 1
        curr_idx = torch.tensor(NECK_IDX, dtype=torch.long)
        while curr_idx != -1:
            neck_kin_chain.append(curr_idx)
            curr_idx = self.parents[curr_idx]
        self.register_buffer('neck_kin_chain', torch.stack(neck_kin_chain))

        #----------------------------------
        # clip rotation angles within a narrow range if needed
        eye_limits=((-50, 50), (-50, 50), (-0.1, 0.1))
        neck_limits=((-90, 90), (-60, 60), (-80, 80))
        jaw_limits=((-5, 60), (-0.1, 0.1), (-0.1, 0.1))
        global_limits=((-20, 20), (-90, 90), (-20, 20))

        global_limits = torch.tensor(global_limits).float() / 180 * np.pi
        self.register_buffer('global_limits', global_limits)
        neck_limits = torch.tensor(neck_limits).float() / 180 * np.pi
        self.register_buffer('neck_limits', neck_limits)
        jaw_limits = torch.tensor(jaw_limits).float() / 180 * np.pi
        self.register_buffer('jaw_limits', jaw_limits)
        eye_limits = torch.tensor(eye_limits).float() / 180 * np.pi
        self.register_buffer('eye_limits', eye_limits)


    def _find_dynamic_lmk_idx_and_bcoords(self, pose, dynamic_lmk_faces_idx,
                                          dynamic_lmk_b_coords,
                                          neck_kin_chain, dtype=torch.float32):
        """
            Selects the face contour depending on the reletive position of the head
            Input:
                vertices: N X num_of_vertices X 3
                pose: N X full pose
                dynamic_lmk_faces_idx: The list of contour face indexes
                dynamic_lmk_b_coords: The list of contour barycentric weights
                neck_kin_chain: The tree to consider for the relative rotation
                dtype: Data type
            return:
                The contour face indexes and the corresponding barycentric weights
        """

        batch_size = pose.shape[0]

        aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1,
                                     neck_kin_chain)
        rot_mats = batch_rodrigues(
            aa_pose.view(-1, 3), dtype=dtype).view(batch_size, -1, 3, 3)

        rel_rot_mat = torch.eye(3, device=pose.device,
                                dtype=dtype).unsqueeze_(dim=0).expand(batch_size, -1, -1)
        for idx in range(len(neck_kin_chain)):
            rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat)

        y_rot_angle = torch.round(
            torch.clamp(rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi,
                        max=39)).to(dtype=torch.long)

        neg_mask = y_rot_angle.lt(0).to(dtype=torch.long)
        mask = y_rot_angle.lt(-39).to(dtype=torch.long)
        neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle)
        y_rot_angle = (neg_mask * neg_vals +
                       (1 - neg_mask) * y_rot_angle)

        dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx,
                                               0, y_rot_angle)
        dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords,
                                              0, y_rot_angle)
        return dyn_lmk_faces_idx, dyn_lmk_b_coords

    def _apply_rotation_limit(self, rotation, limit):
        r_min, r_max = limit[:, 0].view(1, 3), limit[:, 1].view(1, 3)
        diff = r_max - r_min
        return r_min + (torch.tanh(rotation) + 1) / 2 * diff

    def apply_rotation_limits(self, neck=None, jaw=None):
        """
        method to call for applying rotation limits. Don't use _apply_rotation_limit() in other methods as this
        might cause some bugs if we change which poses are affected by rotation limits. For this reason, in this method,
        all affected poses are limited within one function so that if we add more restricted poses, they can just be
        updated here
        :param neck:
        :param jaw:
        :return:
        """
        neck = self._apply_rotation_limit(neck, self.neck_limits) if neck is not None else None
        jaw = self._apply_rotation_limit(jaw, self.jaw_limits) if jaw is not None else None

        ret = [i for i in [neck, jaw] if i is not None]

        return ret[0] if len(ret) == 1 else ret

    def _revert_rotation_limit(self, rotation, limit):
        """
        inverse function of _apply_rotation_limit()
        from rotation angle vector (rodriguez) -> scalars from -inf ... inf
        :param rotation: tensor of shape N x 3
        :param limit: tensor of shape 3 x 2 (min, max)
        :return:
        """
        r_min, r_max = limit[:, 0].view(1, 3), limit[:, 1].view(1, 3)
        diff = r_max - r_min
        rotation = rotation.clone()
        for i in range(3):
            rotation[:, i] = torch.clip(rotation[:, i],
                                        min=r_min[0, i] + diff[0, i] * .01,
                                        max=r_max[0, i] - diff[0, i] * .01)
        return torch.atanh((rotation - r_min) / diff * 2 - 1)

    def revert_rotation_limits(self, neck, jaw):
        """
        inverse function of apply_rotation_limits()
        from rotation angle vector (rodriguez) -> scalars from -inf ... inf
        :param rotation:
        :param limit:
        :return:
        """
        neck = self._revert_rotation_limit(neck, self.neck_limits)
        jaw = self._revert_rotation_limit(jaw, self.jaw_limits)
        return neck, jaw

    def get_neutral_joint_rotations(self):
        res = {}
        for name, limit in zip(['neck', 'jaw', 'global', 'eyes'],
                               [self.neck_limits, self.jaw_limits,
                                self.global_limits, self.eye_limits]):
            r_min, r_max = limit[:, 0], limit[:, 1]
            diff = r_max - r_min
            res[name] = torch.atanh(-2 * r_min / diff - 1)
            # assert (r_min + (torch.tanh(res[name]) + 1) / 2 * diff) < 1e-7
        return res

    def _pose2rot(self, pose):
        rot_mats = batch_rodrigues(
            pose.view(-1, 3), dtype=pose.dtype).view([pose.shape[0], 3, 3])
        
        return rot_mats

    def _vertices2landmarks(self, vertices, faces, lmk_faces_idx, lmk_bary_coords):
        """
            Calculates landmarks by barycentric interpolation
            Input:
                vertices: torch.tensor NxVx3, dtype = torch.float32
                    The tensor of input vertices
                faces: torch.tensor (N*F)x3, dtype = torch.long
                    The faces of the mesh
                lmk_faces_idx: torch.tensor N X L, dtype = torch.long
                    The tensor with the indices of the faces used to calculate the
                    landmarks.
                lmk_bary_coords: torch.tensor N X L X 3, dtype = torch.float32
                    The tensor of barycentric coordinates that are used to interpolate
                    the landmarks

            Returns:
                landmarks: torch.tensor NxLx3, dtype = torch.float32
                    The coordinates of the landmarks for each mesh in the batch
        """
        # Extract the indices of the vertices for each face
        # NxLx3
        batch_size, num_verts = vertices.shape[:2]
        lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view(
            1, -1, 3).view(batch_size, lmk_faces_idx.shape[1], -1)

        lmk_faces += torch.arange(batch_size, dtype=torch.long).view(-1, 1, 1).to(
            device=vertices.device) * num_verts

        lmk_vertices = vertices.view(-1, 3)[lmk_faces]
        landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords])
        return landmarks

    def seletec_3d68(self, vertices):
        landmarks3d = vertices2landmarks(vertices, self.faces_tensor,
                                         self.full_lmk_faces_idx.repeat(vertices.shape[0], 1),
                                         self.full_lmk_bary_coords.repeat(vertices.shape[0], 1, 1))
        return landmarks3d

    def forward(self, shape_params=None, expression_params=None, pose_params=None, eye_pose_params=None, use_rotation_limits=False):
        """
            Input:
                shape_params: N X number of shape parameters
                expression_params: N X number of expression parameters
                pose_params: N X number of pose parameters (6)
            return:d
                vertices: N X V X 3
                landmarks: N X number of landmarks X 3
        """
        batch_size = shape_params.shape[0]
        if pose_params is None:
            pose_params = self.eye_pose.expand(batch_size, -1)
        if eye_pose_params is None:
            eye_pose_params = self.eye_pose.expand(batch_size, -1)
        betas = torch.cat([shape_params, expression_params], dim=1)

        if use_rotation_limits:
            neck_pose, jaw_pose = self.apply_rotation_limits(neck=pose_params[:, :3], jaw=pose_params[:, 3:])
            pose_params = torch.cat([neck_pose,jaw_pose],dim=-1)

            eye_pose_params = torch.cat([self._apply_rotation_limit(eye_pose_params[:, :3], self.eye_limits),
                        self._apply_rotation_limit(eye_pose_params[:, 3:], self.eye_limits)], dim=1)
            
        # set global rotation to zero
        full_pose = torch.cat(
            [torch.zeros_like(pose_params[:, :3]), pose_params[:, :3], pose_params[:, 3:], eye_pose_params], dim=1)
        # full_pose = torch.cat(
        #     [pose_params[:, :3], torch.zeros_like(pose_params[:, :3]), pose_params[:, 3:], eye_pose_params], dim=1)
        template_vertices = self.v_template.unsqueeze(0).expand(batch_size, -1, -1)

        vertices, J_transformed = lbs(betas, full_pose, template_vertices,
                          self.shapedirs, self.posedirs,
                          self.J_regressor, self.parents,
                          self.lbs_weights, dtype=self.dtype)

        lmk_faces_idx = self.lmk_faces_idx.unsqueeze(dim=0).expand(batch_size, -1)
        lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).expand(batch_size, -1, -1)

        dyn_lmk_faces_idx, dyn_lmk_bary_coords = self._find_dynamic_lmk_idx_and_bcoords(
            full_pose, self.dynamic_lmk_faces_idx,
            self.dynamic_lmk_bary_coords,
            self.neck_kin_chain, dtype=self.dtype)
        lmk_faces_idx = torch.cat([dyn_lmk_faces_idx, lmk_faces_idx], 1)
        lmk_bary_coords = torch.cat([dyn_lmk_bary_coords, lmk_bary_coords], 1)

        landmarks2d = vertices2landmarks(vertices, self.faces_tensor,
                                         lmk_faces_idx,
                                         lmk_bary_coords)
        bz = vertices.shape[0]
        landmarks3d = vertices2landmarks(vertices, self.faces_tensor,
                                         self.full_lmk_faces_idx.repeat(bz, 1),
                                         self.full_lmk_bary_coords.repeat(bz, 1, 1))

        return vertices, landmarks2d, landmarks3d, J_transformed



class FLAMETex(nn.Module):
    """
    current FLAME texture:
    https://github.com/TimoBolkart/TF_FLAME/blob/ade0ab152300ec5f0e8555d6765411555c5ed43d/sample_texture.py#L64
    tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/albedoModel2020_FLAME_albedoPart.npz'
    ## adapted from BFM
    tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/FLAME_albedo_from_BFM.npz'
    """

    def __init__(self, config):
        super(FLAMETex, self).__init__()
        if config.tex_type == 'BFM':
            mu_key = 'MU'
            pc_key = 'PC'
            n_pc = 199
            tex_path = config.tex_path
            tex_space = np.load(tex_path)
            texture_mean = tex_space[mu_key].reshape(1, -1)
            texture_basis = tex_space[pc_key].reshape(-1, n_pc)

        elif config.tex_type == 'FLAME':
            mu_key = 'mean'
            pc_key = 'tex_dir'
            n_pc = 200
            tex_path = config.flame_tex_path
            tex_space = np.load(tex_path)
            texture_mean = tex_space[mu_key].reshape(1, -1) / 255.
            texture_basis = tex_space[pc_key].reshape(-1, n_pc) / 255.

        else:
            print('texture type ', config.tex_type, 'not exist!')
            exit()

        n_tex = config.n_tex
        num_components = texture_basis.shape[1]
        texture_mean = torch.from_numpy(texture_mean).float()[None, ...]
        texture_basis = torch.from_numpy(texture_basis[:, :n_tex]).float()[None, ...]
        self.register_buffer('texture_mean', texture_mean)
        self.register_buffer('texture_basis', texture_basis)

    def forward(self, texcode):
        texture = self.texture_mean + (self.texture_basis * texcode[:, None, :]).sum(-1)
        texture = texture.reshape(texcode.shape[0], 512, 512, 3).permute(0, 3, 1, 2)
        texture = F.interpolate(texture, [256, 256])
        texture = texture[:, [2, 1, 0], :, :]
        return texture

class FLAMETex_trainable(nn.Module):
    """
    current FLAME texture:
    https://github.com/TimoBolkart/TF_FLAME/blob/ade0ab152300ec5f0e8555d6765411555c5ed43d/sample_texture.py#L64
    tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/albedoModel2020_FLAME_albedoPart.npz'
    ## adapted from BFM
    tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/FLAME_albedo_from_BFM.npz'
    """

    def __init__(self, config):
        super(FLAMETex_trainable, self).__init__()
        tex_params = config.tex_params
        texture_model = np.load(config.tex_path)

        num_tex_pc = texture_model['PC'].shape[-1]
        tex_shape = texture_model['MU'].shape

        MU = torch.from_numpy(np.reshape(texture_model['MU'], (1, -1))).float()[None, ...]
        PC = torch.from_numpy(np.reshape(texture_model['PC'], (-1, num_tex_pc))[:, :tex_params]).float()[None, ...]
        self.register_buffer('MU', MU)
        self.register_buffer('PC', PC)

        if 'specMU' in texture_model.files:
            specMU = torch.from_numpy(np.reshape(texture_model['specMU'], (1, -1))).float()[None, ...]
            specPC = torch.from_numpy(np.reshape(texture_model['specPC'], (-1, num_tex_pc)))[:, :tex_params].float()[
                None, ...]
            self.register_buffer('specMU', specMU)
            self.register_buffer('specPC', specPC)
            self.isspec = True
        else:
            self.isspec = False

        self.register_parameter('PC_correction', nn.Parameter(torch.zeros_like(PC)))

    def forward(self, texcode):
        diff_albedo = self.MU + (self.PC * texcode[:, None, :]).sum(-1) + (
                    self.PC_correction * texcode[:, None, :]).sum(-1)
        if self.isspec:
            spec_albedo = self.specMU + (self.specPC * texcode[:, None, :]).sum(-1)
            texture = (diff_albedo + spec_albedo)  # torch.pow(0.6*(diff_albedo + spec_albedo), 1.0/2.2)
        else:
            texture = diff_albedo
        texture = texture.reshape(texcode.shape[0], 512, 512, 3).permute(0, 3, 1, 2)
        texture = F.interpolate(texture, [256, 256])
        texture = texture[:, [2, 1, 0], :, :]
        return texture