Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,436 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# FLAME face model, modified from https://github.com/radekd91/emoca
import torch
import torch.nn as nn
import numpy as np
import pickle
import torch.nn.functional as F
from .lbs import lbs, batch_rodrigues, vertices2landmarks
def to_tensor(array, dtype=torch.float32):
if 'torch.tensor' not in str(type(array)):
return torch.tensor(array, dtype=dtype)
def to_np(array, dtype=np.float32):
if 'scipy.sparse' in str(type(array)):
array = array.todense()
return np.array(array, dtype=dtype)
class Struct(object):
def __init__(self, **kwargs):
for key, val in kwargs.items():
setattr(self, key, val)
def rot_mat_to_euler(rot_mats):
# Calculates rotation matrix to euler angles
# Careful for extreme cases of eular angles like [0.0, pi, 0.0]
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] +
rot_mats[:, 1, 0] * rot_mats[:, 1, 0])
return torch.atan2(-rot_mats[:, 2, 0], sy)
class FLAME(nn.Module):
"""
Given flame parameters this class generates a differentiable FLAME function
which outputs the a mesh and 2D/3D facial landmarks
"""
def __init__(self, config, flame_full=False):
super(FLAME, self).__init__()
print("creating the FLAME Decoder")
with open(config.flame_model_path, 'rb') as f:
# flame_model = Struct(**pickle.load(f, encoding='latin1'))
ss = pickle.load(f, encoding='latin1')
flame_model = Struct(**ss)
self.dtype = torch.float32
self.register_buffer('faces_tensor', to_tensor(to_np(flame_model.f, dtype=np.int64), dtype=torch.long))
# The vertices of the template model
self.register_buffer('v_template', to_tensor(to_np(flame_model.v_template), dtype=self.dtype))
# The shape components and expression
shapedirs = to_tensor(to_np(flame_model.shapedirs), dtype=self.dtype)
if not flame_full:
shapedirs = torch.cat([shapedirs[:, :, :config.n_shape], shapedirs[:, :, 300:300 + config.n_exp]], 2)
else:
shapedirs = torch.cat([shapedirs[:, :, :300], shapedirs[:, :, 300:400]], 2)
self.register_buffer('shapedirs', shapedirs)
# The pose components
num_pose_basis = flame_model.posedirs.shape[-1]
posedirs = np.reshape(flame_model.posedirs, [-1, num_pose_basis]).T
self.register_buffer('posedirs', to_tensor(to_np(posedirs), dtype=self.dtype))
#
self.register_buffer('J_regressor', to_tensor(to_np(flame_model.J_regressor), dtype=self.dtype))
parents = to_tensor(to_np(flame_model.kintree_table[0])).long()
parents[0] = -1
self.register_buffer('parents', parents)
self.register_buffer('lbs_weights', to_tensor(to_np(flame_model.weights), dtype=self.dtype))
# Fixing Eyeball and neck rotation
default_eyball_pose = torch.zeros([1, 6], dtype=self.dtype, requires_grad=False)
self.register_parameter('eye_pose', nn.Parameter(default_eyball_pose,
requires_grad=False))
default_neck_pose = torch.zeros([1, 3], dtype=self.dtype, requires_grad=False)
self.register_parameter('neck_pose', nn.Parameter(default_neck_pose,
requires_grad=False))
# Static and Dynamic Landmark embeddings for FLAME
lmk_embeddings = np.load(config.flame_lmk_embedding_path, allow_pickle=True, encoding='latin1')
lmk_embeddings = lmk_embeddings[()]
self.register_buffer('lmk_faces_idx', torch.tensor(lmk_embeddings['static_lmk_faces_idx'], dtype=torch.long))
self.register_buffer('lmk_bary_coords',
torch.tensor(lmk_embeddings['static_lmk_bary_coords'], dtype=self.dtype))
self.register_buffer('dynamic_lmk_faces_idx',
torch.tensor(lmk_embeddings['dynamic_lmk_faces_idx'], dtype=torch.long))
self.register_buffer('dynamic_lmk_bary_coords',
torch.tensor(lmk_embeddings['dynamic_lmk_bary_coords'], dtype=self.dtype))
self.register_buffer('full_lmk_faces_idx', torch.tensor(lmk_embeddings['full_lmk_faces_idx'], dtype=torch.long))
self.register_buffer('full_lmk_bary_coords',
torch.tensor(lmk_embeddings['full_lmk_bary_coords'], dtype=self.dtype))
neck_kin_chain = []
NECK_IDX = 1
curr_idx = torch.tensor(NECK_IDX, dtype=torch.long)
while curr_idx != -1:
neck_kin_chain.append(curr_idx)
curr_idx = self.parents[curr_idx]
self.register_buffer('neck_kin_chain', torch.stack(neck_kin_chain))
#----------------------------------
# clip rotation angles within a narrow range if needed
eye_limits=((-50, 50), (-50, 50), (-0.1, 0.1))
neck_limits=((-90, 90), (-60, 60), (-80, 80))
jaw_limits=((-5, 60), (-0.1, 0.1), (-0.1, 0.1))
global_limits=((-20, 20), (-90, 90), (-20, 20))
global_limits = torch.tensor(global_limits).float() / 180 * np.pi
self.register_buffer('global_limits', global_limits)
neck_limits = torch.tensor(neck_limits).float() / 180 * np.pi
self.register_buffer('neck_limits', neck_limits)
jaw_limits = torch.tensor(jaw_limits).float() / 180 * np.pi
self.register_buffer('jaw_limits', jaw_limits)
eye_limits = torch.tensor(eye_limits).float() / 180 * np.pi
self.register_buffer('eye_limits', eye_limits)
def _find_dynamic_lmk_idx_and_bcoords(self, pose, dynamic_lmk_faces_idx,
dynamic_lmk_b_coords,
neck_kin_chain, dtype=torch.float32):
"""
Selects the face contour depending on the reletive position of the head
Input:
vertices: N X num_of_vertices X 3
pose: N X full pose
dynamic_lmk_faces_idx: The list of contour face indexes
dynamic_lmk_b_coords: The list of contour barycentric weights
neck_kin_chain: The tree to consider for the relative rotation
dtype: Data type
return:
The contour face indexes and the corresponding barycentric weights
"""
batch_size = pose.shape[0]
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1,
neck_kin_chain)
rot_mats = batch_rodrigues(
aa_pose.view(-1, 3), dtype=dtype).view(batch_size, -1, 3, 3)
rel_rot_mat = torch.eye(3, device=pose.device,
dtype=dtype).unsqueeze_(dim=0).expand(batch_size, -1, -1)
for idx in range(len(neck_kin_chain)):
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat)
y_rot_angle = torch.round(
torch.clamp(rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi,
max=39)).to(dtype=torch.long)
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long)
mask = y_rot_angle.lt(-39).to(dtype=torch.long)
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle)
y_rot_angle = (neg_mask * neg_vals +
(1 - neg_mask) * y_rot_angle)
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx,
0, y_rot_angle)
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords,
0, y_rot_angle)
return dyn_lmk_faces_idx, dyn_lmk_b_coords
def _apply_rotation_limit(self, rotation, limit):
r_min, r_max = limit[:, 0].view(1, 3), limit[:, 1].view(1, 3)
diff = r_max - r_min
return r_min + (torch.tanh(rotation) + 1) / 2 * diff
def apply_rotation_limits(self, neck=None, jaw=None):
"""
method to call for applying rotation limits. Don't use _apply_rotation_limit() in other methods as this
might cause some bugs if we change which poses are affected by rotation limits. For this reason, in this method,
all affected poses are limited within one function so that if we add more restricted poses, they can just be
updated here
:param neck:
:param jaw:
:return:
"""
neck = self._apply_rotation_limit(neck, self.neck_limits) if neck is not None else None
jaw = self._apply_rotation_limit(jaw, self.jaw_limits) if jaw is not None else None
ret = [i for i in [neck, jaw] if i is not None]
return ret[0] if len(ret) == 1 else ret
def _revert_rotation_limit(self, rotation, limit):
"""
inverse function of _apply_rotation_limit()
from rotation angle vector (rodriguez) -> scalars from -inf ... inf
:param rotation: tensor of shape N x 3
:param limit: tensor of shape 3 x 2 (min, max)
:return:
"""
r_min, r_max = limit[:, 0].view(1, 3), limit[:, 1].view(1, 3)
diff = r_max - r_min
rotation = rotation.clone()
for i in range(3):
rotation[:, i] = torch.clip(rotation[:, i],
min=r_min[0, i] + diff[0, i] * .01,
max=r_max[0, i] - diff[0, i] * .01)
return torch.atanh((rotation - r_min) / diff * 2 - 1)
def revert_rotation_limits(self, neck, jaw):
"""
inverse function of apply_rotation_limits()
from rotation angle vector (rodriguez) -> scalars from -inf ... inf
:param rotation:
:param limit:
:return:
"""
neck = self._revert_rotation_limit(neck, self.neck_limits)
jaw = self._revert_rotation_limit(jaw, self.jaw_limits)
return neck, jaw
def get_neutral_joint_rotations(self):
res = {}
for name, limit in zip(['neck', 'jaw', 'global', 'eyes'],
[self.neck_limits, self.jaw_limits,
self.global_limits, self.eye_limits]):
r_min, r_max = limit[:, 0], limit[:, 1]
diff = r_max - r_min
res[name] = torch.atanh(-2 * r_min / diff - 1)
# assert (r_min + (torch.tanh(res[name]) + 1) / 2 * diff) < 1e-7
return res
def _pose2rot(self, pose):
rot_mats = batch_rodrigues(
pose.view(-1, 3), dtype=pose.dtype).view([pose.shape[0], 3, 3])
return rot_mats
def _vertices2landmarks(self, vertices, faces, lmk_faces_idx, lmk_bary_coords):
"""
Calculates landmarks by barycentric interpolation
Input:
vertices: torch.tensor NxVx3, dtype = torch.float32
The tensor of input vertices
faces: torch.tensor (N*F)x3, dtype = torch.long
The faces of the mesh
lmk_faces_idx: torch.tensor N X L, dtype = torch.long
The tensor with the indices of the faces used to calculate the
landmarks.
lmk_bary_coords: torch.tensor N X L X 3, dtype = torch.float32
The tensor of barycentric coordinates that are used to interpolate
the landmarks
Returns:
landmarks: torch.tensor NxLx3, dtype = torch.float32
The coordinates of the landmarks for each mesh in the batch
"""
# Extract the indices of the vertices for each face
# NxLx3
batch_size, num_verts = vertices.shape[:2]
lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view(
1, -1, 3).view(batch_size, lmk_faces_idx.shape[1], -1)
lmk_faces += torch.arange(batch_size, dtype=torch.long).view(-1, 1, 1).to(
device=vertices.device) * num_verts
lmk_vertices = vertices.view(-1, 3)[lmk_faces]
landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords])
return landmarks
def seletec_3d68(self, vertices):
landmarks3d = vertices2landmarks(vertices, self.faces_tensor,
self.full_lmk_faces_idx.repeat(vertices.shape[0], 1),
self.full_lmk_bary_coords.repeat(vertices.shape[0], 1, 1))
return landmarks3d
def forward(self, shape_params=None, expression_params=None, pose_params=None, eye_pose_params=None, use_rotation_limits=False):
"""
Input:
shape_params: N X number of shape parameters
expression_params: N X number of expression parameters
pose_params: N X number of pose parameters (6)
return:d
vertices: N X V X 3
landmarks: N X number of landmarks X 3
"""
batch_size = shape_params.shape[0]
if pose_params is None:
pose_params = self.eye_pose.expand(batch_size, -1)
if eye_pose_params is None:
eye_pose_params = self.eye_pose.expand(batch_size, -1)
betas = torch.cat([shape_params, expression_params], dim=1)
if use_rotation_limits:
neck_pose, jaw_pose = self.apply_rotation_limits(neck=pose_params[:, :3], jaw=pose_params[:, 3:])
pose_params = torch.cat([neck_pose,jaw_pose],dim=-1)
eye_pose_params = torch.cat([self._apply_rotation_limit(eye_pose_params[:, :3], self.eye_limits),
self._apply_rotation_limit(eye_pose_params[:, 3:], self.eye_limits)], dim=1)
# set global rotation to zero
full_pose = torch.cat(
[torch.zeros_like(pose_params[:, :3]), pose_params[:, :3], pose_params[:, 3:], eye_pose_params], dim=1)
# full_pose = torch.cat(
# [pose_params[:, :3], torch.zeros_like(pose_params[:, :3]), pose_params[:, 3:], eye_pose_params], dim=1)
template_vertices = self.v_template.unsqueeze(0).expand(batch_size, -1, -1)
vertices, J_transformed = lbs(betas, full_pose, template_vertices,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, dtype=self.dtype)
lmk_faces_idx = self.lmk_faces_idx.unsqueeze(dim=0).expand(batch_size, -1)
lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).expand(batch_size, -1, -1)
dyn_lmk_faces_idx, dyn_lmk_bary_coords = self._find_dynamic_lmk_idx_and_bcoords(
full_pose, self.dynamic_lmk_faces_idx,
self.dynamic_lmk_bary_coords,
self.neck_kin_chain, dtype=self.dtype)
lmk_faces_idx = torch.cat([dyn_lmk_faces_idx, lmk_faces_idx], 1)
lmk_bary_coords = torch.cat([dyn_lmk_bary_coords, lmk_bary_coords], 1)
landmarks2d = vertices2landmarks(vertices, self.faces_tensor,
lmk_faces_idx,
lmk_bary_coords)
bz = vertices.shape[0]
landmarks3d = vertices2landmarks(vertices, self.faces_tensor,
self.full_lmk_faces_idx.repeat(bz, 1),
self.full_lmk_bary_coords.repeat(bz, 1, 1))
return vertices, landmarks2d, landmarks3d, J_transformed
class FLAMETex(nn.Module):
"""
current FLAME texture:
https://github.com/TimoBolkart/TF_FLAME/blob/ade0ab152300ec5f0e8555d6765411555c5ed43d/sample_texture.py#L64
tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/albedoModel2020_FLAME_albedoPart.npz'
## adapted from BFM
tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/FLAME_albedo_from_BFM.npz'
"""
def __init__(self, config):
super(FLAMETex, self).__init__()
if config.tex_type == 'BFM':
mu_key = 'MU'
pc_key = 'PC'
n_pc = 199
tex_path = config.tex_path
tex_space = np.load(tex_path)
texture_mean = tex_space[mu_key].reshape(1, -1)
texture_basis = tex_space[pc_key].reshape(-1, n_pc)
elif config.tex_type == 'FLAME':
mu_key = 'mean'
pc_key = 'tex_dir'
n_pc = 200
tex_path = config.flame_tex_path
tex_space = np.load(tex_path)
texture_mean = tex_space[mu_key].reshape(1, -1) / 255.
texture_basis = tex_space[pc_key].reshape(-1, n_pc) / 255.
else:
print('texture type ', config.tex_type, 'not exist!')
exit()
n_tex = config.n_tex
num_components = texture_basis.shape[1]
texture_mean = torch.from_numpy(texture_mean).float()[None, ...]
texture_basis = torch.from_numpy(texture_basis[:, :n_tex]).float()[None, ...]
self.register_buffer('texture_mean', texture_mean)
self.register_buffer('texture_basis', texture_basis)
def forward(self, texcode):
texture = self.texture_mean + (self.texture_basis * texcode[:, None, :]).sum(-1)
texture = texture.reshape(texcode.shape[0], 512, 512, 3).permute(0, 3, 1, 2)
texture = F.interpolate(texture, [256, 256])
texture = texture[:, [2, 1, 0], :, :]
return texture
class FLAMETex_trainable(nn.Module):
"""
current FLAME texture:
https://github.com/TimoBolkart/TF_FLAME/blob/ade0ab152300ec5f0e8555d6765411555c5ed43d/sample_texture.py#L64
tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/albedoModel2020_FLAME_albedoPart.npz'
## adapted from BFM
tex_path: '/ps/scratch/yfeng/Data/FLAME/texture/FLAME_albedo_from_BFM.npz'
"""
def __init__(self, config):
super(FLAMETex_trainable, self).__init__()
tex_params = config.tex_params
texture_model = np.load(config.tex_path)
num_tex_pc = texture_model['PC'].shape[-1]
tex_shape = texture_model['MU'].shape
MU = torch.from_numpy(np.reshape(texture_model['MU'], (1, -1))).float()[None, ...]
PC = torch.from_numpy(np.reshape(texture_model['PC'], (-1, num_tex_pc))[:, :tex_params]).float()[None, ...]
self.register_buffer('MU', MU)
self.register_buffer('PC', PC)
if 'specMU' in texture_model.files:
specMU = torch.from_numpy(np.reshape(texture_model['specMU'], (1, -1))).float()[None, ...]
specPC = torch.from_numpy(np.reshape(texture_model['specPC'], (-1, num_tex_pc)))[:, :tex_params].float()[
None, ...]
self.register_buffer('specMU', specMU)
self.register_buffer('specPC', specPC)
self.isspec = True
else:
self.isspec = False
self.register_parameter('PC_correction', nn.Parameter(torch.zeros_like(PC)))
def forward(self, texcode):
diff_albedo = self.MU + (self.PC * texcode[:, None, :]).sum(-1) + (
self.PC_correction * texcode[:, None, :]).sum(-1)
if self.isspec:
spec_albedo = self.specMU + (self.specPC * texcode[:, None, :]).sum(-1)
texture = (diff_albedo + spec_albedo) # torch.pow(0.6*(diff_albedo + spec_albedo), 1.0/2.2)
else:
texture = diff_albedo
texture = texture.reshape(texcode.shape[0], 512, 512, 3).permute(0, 3, 1, 2)
texture = F.interpolate(texture, [256, 256])
texture = texture[:, [2, 1, 0], :, :]
return texture
|