Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import imageio | |
import numpy as np | |
from typing import Union | |
import torch | |
import torchvision | |
from tqdm import tqdm | |
from einops import rearrange | |
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8): | |
videos = rearrange(videos, "b c t h w -> t b c h w") | |
outputs = [] | |
for x in videos: | |
x = torchvision.utils.make_grid(x, nrow=n_rows) | |
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
if rescale: | |
x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
x = (x * 255).numpy().astype(np.uint8) | |
outputs.append(x) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
imageio.mimsave(path, outputs, fps=fps) | |
# DDIM Inversion | |
def init_prompt(prompt, pipeline): | |
uncond_input = pipeline.tokenizer( | |
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, | |
return_tensors="pt" | |
) | |
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0] | |
text_input = pipeline.tokenizer( | |
[prompt], | |
padding="max_length", | |
max_length=pipeline.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0] | |
context = torch.cat([uncond_embeddings, text_embeddings]) | |
return context | |
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, | |
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler): | |
timestep, next_timestep = min( | |
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep | |
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod | |
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep] | |
beta_prod_t = 1 - alpha_prod_t | |
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 | |
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output | |
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction | |
return next_sample | |
def get_noise_pred_single(latents, t, context, unet): | |
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"] | |
return noise_pred | |
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt): | |
context = init_prompt(prompt, pipeline) | |
uncond_embeddings, cond_embeddings = context.chunk(2) | |
all_latent = [latent] | |
latent = latent.clone().detach() | |
for i in tqdm(range(num_inv_steps)): | |
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1] | |
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet) | |
latent = next_step(noise_pred, t, latent, ddim_scheduler) | |
all_latent.append(latent) | |
return all_latent | |
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""): | |
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt) | |
return ddim_latents | |
def rendering(): | |
pass | |
def force_zero_snr(betas): | |
alphas = 1 - betas | |
alphas_bar = torch.cumprod(alphas, dim=0) | |
alphas_bar_sqrt = alphas_bar ** (1/2) | |
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() | |
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() - 1e-6 | |
alphas_bar_sqrt -= alphas_bar_sqrt_T | |
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) | |
alphas_bar = alphas_bar_sqrt ** 2 | |
alphas = alphas_bar[1:] / alphas_bar[:-1] | |
alphas = torch.cat([alphas_bar[0:1], alphas], 0) | |
betas = 1 - alphas | |
return betas | |
def make_beta_schedule(schedule="scaled_linear", n_timestep=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3, shift_scale=None): | |
if schedule == "scaled_linear": | |
betas = ( | |
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 | |
) | |
elif schedule == 'linear': | |
betas = ( | |
torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) | |
) | |
elif schedule == "cosine": | |
timesteps = ( | |
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s | |
) | |
alphas = timesteps / (1 + cosine_s) * np.pi / 2 | |
alphas = torch.cos(alphas).pow(2) | |
alphas = alphas / alphas[0] | |
betas = 1 - alphas[1:] / alphas[:-1] | |
betas = np.clip(betas, a_min=0, a_max=0.999) | |
elif schedule == "sqrt_linear": | |
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) | |
elif schedule == "sqrt": | |
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 | |
elif schedule == 'linear_force_zero_snr': | |
betas = ( | |
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 | |
) | |
betas = force_zero_snr(betas) | |
elif schedule == 'linear_100': | |
betas = ( | |
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 | |
) | |
betas = betas[:100] | |
else: | |
raise ValueError(f"schedule '{schedule}' unknown.") | |
if shift_scale is not None: | |
print("shift_scale") | |
betas = shift_schedule(betas, shift_scale) | |
return betas.numpy() | |
def shift_schedule(base_betas, shift_scale): | |
alphas = 1 - base_betas | |
alphas_bar = torch.cumprod(alphas, dim=0) | |
snr = alphas_bar / (1 - alphas_bar) # snr(1-ab)=ab; snr-snr*ab=ab; snr=(1+snr)ab; ab=snr/(1+snr) | |
shifted_snr = snr * ((1 / shift_scale) ** 2) | |
shifted_alphas_bar = shifted_snr / (1 + shifted_snr) | |
shifted_alphas = shifted_alphas_bar[1:] / shifted_alphas_bar[:-1] | |
shifted_alphas = torch.cat([shifted_alphas_bar[0:1], shifted_alphas], 0) | |
shifted_betas = 1 - shifted_alphas | |
return shifted_betas | |
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True): | |
n_dims = len(x.shape) | |
if src_dim < 0: | |
src_dim = n_dims + src_dim | |
if dest_dim < 0: | |
dest_dim = n_dims + dest_dim | |
assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims | |
dims = list(range(n_dims)) | |
del dims[src_dim] | |
permutation = [] | |
ctr = 0 | |
for i in range(n_dims): | |
if i == dest_dim: | |
permutation.append(src_dim) | |
else: | |
permutation.append(dims[ctr]) | |
ctr += 1 | |
x = x.permute(permutation) | |
if make_contiguous: | |
x = x.contiguous() | |
return x | |
# reshapes tensor start from dim i (inclusive) | |
# to dim j (exclusive) to the desired shape | |
# e.g. if x.shape = (b, thw, c) then | |
# view_range(x, 1, 2, (t, h, w)) returns | |
# x of shape (b, t, h, w, c) | |
def view_range(x, i, j, shape): | |
shape = tuple(shape) | |
n_dims = len(x.shape) | |
if i < 0: | |
i = n_dims + i | |
if j is None: | |
j = n_dims | |
elif j < 0: | |
j = n_dims + j | |
assert 0 <= i < j <= n_dims | |
x_shape = x.shape | |
target_shape = x_shape[:i] + shape + x_shape[j:] | |
return x.view(target_shape) | |
def tensor_slice(x, begin, size): | |
assert all([b >= 0 for b in begin]) | |
size = [l - b if s == -1 else s | |
for s, b, l in zip(size, begin, x.shape)] | |
assert all([s >= 0 for s in size]) | |
slices = [slice(b, b + s) for b, s in zip(begin, size)] | |
return x[slices] | |