Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,447 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import imageio
import numpy as np
from typing import Union
import torch
import torchvision
from tqdm import tqdm
from einops import rearrange
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
imageio.mimsave(path, outputs, fps=fps)
# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
uncond_input = pipeline.tokenizer(
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
text_input = pipeline.tokenizer(
[prompt],
padding="max_length",
max_length=pipeline.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
context = torch.cat([uncond_embeddings, text_embeddings])
return context
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
timestep, next_timestep = min(
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(latents, t, context, unet):
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
context = init_prompt(prompt, pipeline)
uncond_embeddings, cond_embeddings = context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in tqdm(range(num_inv_steps)):
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
latent = next_step(noise_pred, t, latent, ddim_scheduler)
all_latent.append(latent)
return all_latent
@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
return ddim_latents
def rendering():
pass
def force_zero_snr(betas):
alphas = 1 - betas
alphas_bar = torch.cumprod(alphas, dim=0)
alphas_bar_sqrt = alphas_bar ** (1/2)
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() - 1e-6
alphas_bar_sqrt -= alphas_bar_sqrt_T
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
alphas_bar = alphas_bar_sqrt ** 2
alphas = alphas_bar[1:] / alphas_bar[:-1]
alphas = torch.cat([alphas_bar[0:1], alphas], 0)
betas = 1 - alphas
return betas
def make_beta_schedule(schedule="scaled_linear", n_timestep=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3, shift_scale=None):
if schedule == "scaled_linear":
betas = (
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
)
elif schedule == 'linear':
betas = (
torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
)
elif schedule == "cosine":
timesteps = (
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
)
alphas = timesteps / (1 + cosine_s) * np.pi / 2
alphas = torch.cos(alphas).pow(2)
alphas = alphas / alphas[0]
betas = 1 - alphas[1:] / alphas[:-1]
betas = np.clip(betas, a_min=0, a_max=0.999)
elif schedule == "sqrt_linear":
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
elif schedule == "sqrt":
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
elif schedule == 'linear_force_zero_snr':
betas = (
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
)
betas = force_zero_snr(betas)
elif schedule == 'linear_100':
betas = (
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
)
betas = betas[:100]
else:
raise ValueError(f"schedule '{schedule}' unknown.")
if shift_scale is not None:
print("shift_scale")
betas = shift_schedule(betas, shift_scale)
return betas.numpy()
def shift_schedule(base_betas, shift_scale):
alphas = 1 - base_betas
alphas_bar = torch.cumprod(alphas, dim=0)
snr = alphas_bar / (1 - alphas_bar) # snr(1-ab)=ab; snr-snr*ab=ab; snr=(1+snr)ab; ab=snr/(1+snr)
shifted_snr = snr * ((1 / shift_scale) ** 2)
shifted_alphas_bar = shifted_snr / (1 + shifted_snr)
shifted_alphas = shifted_alphas_bar[1:] / shifted_alphas_bar[:-1]
shifted_alphas = torch.cat([shifted_alphas_bar[0:1], shifted_alphas], 0)
shifted_betas = 1 - shifted_alphas
return shifted_betas
def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True):
n_dims = len(x.shape)
if src_dim < 0:
src_dim = n_dims + src_dim
if dest_dim < 0:
dest_dim = n_dims + dest_dim
assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims
dims = list(range(n_dims))
del dims[src_dim]
permutation = []
ctr = 0
for i in range(n_dims):
if i == dest_dim:
permutation.append(src_dim)
else:
permutation.append(dims[ctr])
ctr += 1
x = x.permute(permutation)
if make_contiguous:
x = x.contiguous()
return x
# reshapes tensor start from dim i (inclusive)
# to dim j (exclusive) to the desired shape
# e.g. if x.shape = (b, thw, c) then
# view_range(x, 1, 2, (t, h, w)) returns
# x of shape (b, t, h, w, c)
def view_range(x, i, j, shape):
shape = tuple(shape)
n_dims = len(x.shape)
if i < 0:
i = n_dims + i
if j is None:
j = n_dims
elif j < 0:
j = n_dims + j
assert 0 <= i < j <= n_dims
x_shape = x.shape
target_shape = x_shape[:i] + shape + x_shape[j:]
return x.view(target_shape)
def tensor_slice(x, begin, size):
assert all([b >= 0 for b in begin])
size = [l - b if s == -1 else s
for s, b, l in zip(size, begin, x.shape)]
assert all([s >= 0 for s in size])
slices = [slice(b, b + s) for b, s in zip(begin, size)]
return x[slices]
|