File size: 7,447 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import imageio
import numpy as np
from typing import Union

import torch
import torchvision

from tqdm import tqdm
from einops import rearrange


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)


# DDIM Inversion
@torch.no_grad()
def init_prompt(prompt, pipeline):
    uncond_input = pipeline.tokenizer(
        [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
        return_tensors="pt"
    )
    uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
    text_input = pipeline.tokenizer(
        [prompt],
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
    context = torch.cat([uncond_embeddings, text_embeddings])

    return context


def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
              sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
    timestep, next_timestep = min(
        timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
    alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
    alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
    beta_prod_t = 1 - alpha_prod_t
    next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
    next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
    next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
    return next_sample


def get_noise_pred_single(latents, t, context, unet):
    noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
    return noise_pred


@torch.no_grad()
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
    context = init_prompt(prompt, pipeline)
    uncond_embeddings, cond_embeddings = context.chunk(2)
    all_latent = [latent]
    latent = latent.clone().detach()
    for i in tqdm(range(num_inv_steps)):
        t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
        noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
        latent = next_step(noise_pred, t, latent, ddim_scheduler)
        all_latent.append(latent)
    return all_latent


@torch.no_grad()
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
    ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
    return ddim_latents

def rendering():
    pass



def force_zero_snr(betas):
    alphas = 1 - betas
    alphas_bar = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_bar ** (1/2)
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() - 1e-6
    alphas_bar_sqrt -= alphas_bar_sqrt_T
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
    alphas_bar = alphas_bar_sqrt ** 2
    alphas = alphas_bar[1:] / alphas_bar[:-1]
    alphas = torch.cat([alphas_bar[0:1], alphas], 0)
    betas = 1 - alphas
    return betas

def make_beta_schedule(schedule="scaled_linear", n_timestep=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3, shift_scale=None):
    if schedule == "scaled_linear":
        betas = (
                torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
        )
    elif schedule == 'linear':
        betas = (
                torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
        )
    elif schedule == "cosine":
        timesteps = (
                torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
        )
        alphas = timesteps / (1 + cosine_s) * np.pi / 2
        alphas = torch.cos(alphas).pow(2)
        alphas = alphas / alphas[0]
        betas = 1 - alphas[1:] / alphas[:-1]
        betas = np.clip(betas, a_min=0, a_max=0.999)

    elif schedule == "sqrt_linear":
        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
    elif schedule == "sqrt":
        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
    elif schedule == 'linear_force_zero_snr':
        betas = (
                torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
        )
        betas = force_zero_snr(betas)
    elif schedule == 'linear_100':
        betas = (
                torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
        )
        betas = betas[:100]
    else:
        raise ValueError(f"schedule '{schedule}' unknown.")

    if shift_scale is not None:
        print("shift_scale")
        betas = shift_schedule(betas, shift_scale)

    return betas.numpy()

def shift_schedule(base_betas, shift_scale):
    alphas = 1 - base_betas
    alphas_bar = torch.cumprod(alphas, dim=0)
    snr = alphas_bar / (1 - alphas_bar) # snr(1-ab)=ab; snr-snr*ab=ab; snr=(1+snr)ab; ab=snr/(1+snr)
    shifted_snr = snr * ((1 / shift_scale) **  2)
    shifted_alphas_bar = shifted_snr / (1 + shifted_snr)
    shifted_alphas = shifted_alphas_bar[1:] / shifted_alphas_bar[:-1]
    shifted_alphas = torch.cat([shifted_alphas_bar[0:1], shifted_alphas], 0)
    shifted_betas = 1 - shifted_alphas
    return shifted_betas


def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True):
    n_dims = len(x.shape)
    if src_dim < 0:
        src_dim = n_dims + src_dim
    if dest_dim < 0:
        dest_dim = n_dims + dest_dim

    assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims

    dims = list(range(n_dims))
    del dims[src_dim]

    permutation = []
    ctr = 0
    for i in range(n_dims):
        if i == dest_dim:
            permutation.append(src_dim)
        else:
            permutation.append(dims[ctr])
            ctr += 1
    x = x.permute(permutation)
    if make_contiguous:
        x = x.contiguous()
    return x


# reshapes tensor start from dim i (inclusive)
# to dim j (exclusive) to the desired shape
# e.g. if x.shape = (b, thw, c) then
# view_range(x, 1, 2, (t, h, w)) returns
# x of shape (b, t, h, w, c)
def view_range(x, i, j, shape):
    shape = tuple(shape)

    n_dims = len(x.shape)
    if i < 0:
        i = n_dims + i

    if j is None:
        j = n_dims
    elif j < 0:
        j = n_dims + j

    assert 0 <= i < j <= n_dims

    x_shape = x.shape
    target_shape = x_shape[:i] + shape + x_shape[j:]
    return x.view(target_shape)


def tensor_slice(x, begin, size):
    assert all([b >= 0 for b in begin])
    size = [l - b if s == -1 else s
            for s, b, l in zip(size, begin, x.shape)]
    assert all([s >= 0 for s in size])

    slices = [slice(b, b + s) for b, s in zip(begin, size)]
    return x[slices]