Spaces:
Build error
Build error
Update audio_processing.py
Browse files- audio_processing.py +54 -1
audio_processing.py
CHANGED
|
@@ -47,7 +47,60 @@ def detect_language(audio):
|
|
| 47 |
return detected_lang
|
| 48 |
|
| 49 |
def process_long_audio(audio, task="transcribe", language=None):
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
def process_audio(audio):
|
| 53 |
if audio is None:
|
|
|
|
| 47 |
return detected_lang
|
| 48 |
|
| 49 |
def process_long_audio(audio, task="transcribe", language=None):
|
| 50 |
+
if audio[0] != SAMPLING_RATE:
|
| 51 |
+
# Save the input audio to a file for ffmpeg processing
|
| 52 |
+
ta.save("input_audio_1.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])
|
| 53 |
+
|
| 54 |
+
# Resample using ffmpeg
|
| 55 |
+
try:
|
| 56 |
+
resample_with_ffmpeg("input_audio_1.wav", "resampled_audio_2.wav", target_sr=SAMPLING_RATE)
|
| 57 |
+
except subprocess.CalledProcessError as e:
|
| 58 |
+
print(f"ffmpeg failed: {e.stderr}")
|
| 59 |
+
raise e
|
| 60 |
+
|
| 61 |
+
waveform, _ = ta.load("resampled_audio_2.wav")
|
| 62 |
+
else:
|
| 63 |
+
waveform = torch.tensor(audio[1]).float()
|
| 64 |
+
|
| 65 |
+
# Ensure the audio is in the correct shape (mono)
|
| 66 |
+
if waveform.dim() == 2:
|
| 67 |
+
waveform = waveform.mean(dim=0)
|
| 68 |
+
|
| 69 |
+
print(f"Waveform shape after processing: {waveform.shape}")
|
| 70 |
+
|
| 71 |
+
if waveform.numel() == 0:
|
| 72 |
+
raise ValueError("Waveform is empty. Please check the input audio file.")
|
| 73 |
+
|
| 74 |
+
input_length = waveform.shape[0] # Since waveform is 1D, access the length with shape[0]
|
| 75 |
+
chunk_length = int(CHUNK_LENGTH_S * SAMPLING_RATE)
|
| 76 |
+
|
| 77 |
+
# Corrected slicing for 1D tensor
|
| 78 |
+
chunks = [waveform[i:i + chunk_length] for i in range(0, input_length, chunk_length)]
|
| 79 |
+
|
| 80 |
+
# Initialize the processor
|
| 81 |
+
processor = get_processor()
|
| 82 |
+
model = get_model()
|
| 83 |
+
device = get_device()
|
| 84 |
+
|
| 85 |
+
results = []
|
| 86 |
+
for chunk in chunks:
|
| 87 |
+
input_features = processor(chunk, sampling_rate=SAMPLING_RATE, return_tensors="pt").input_features.to(device)
|
| 88 |
+
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
if task == "translate":
|
| 91 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="translate")
|
| 92 |
+
generated_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
| 93 |
+
else:
|
| 94 |
+
generated_ids = model.generate(input_features)
|
| 95 |
+
|
| 96 |
+
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 97 |
+
results.extend(transcription)
|
| 98 |
+
|
| 99 |
+
# Clear GPU cache
|
| 100 |
+
torch.cuda.empty_cache()
|
| 101 |
+
|
| 102 |
+
return " ".join(results)
|
| 103 |
+
|
| 104 |
|
| 105 |
def process_audio(audio):
|
| 106 |
if audio is None:
|