Spaces:
Build error
Build error
Update audio_processing.py
Browse files- audio_processing.py +10 -75
audio_processing.py
CHANGED
@@ -3,48 +3,42 @@ import whisper
|
|
3 |
import numpy as np
|
4 |
import torchaudio as ta
|
5 |
import gradio as gr
|
6 |
-
import spaces
|
7 |
from model_utils import get_processor, get_model, get_whisper_model_small, get_device
|
8 |
from config import SAMPLING_RATE, CHUNK_LENGTH_S
|
9 |
import subprocess
|
10 |
|
11 |
-
import subprocess
|
12 |
-
import torchaudio as ta
|
13 |
-
|
14 |
-
|
15 |
def resample_with_ffmpeg(input_file, output_file, target_sr=16000):
|
16 |
command = [
|
17 |
'ffmpeg', '-i', input_file, '-ar', str(target_sr), output_file
|
18 |
]
|
19 |
subprocess.run(command, check=True)
|
20 |
|
21 |
-
@spaces.GPU
|
22 |
def detect_language(audio):
|
23 |
whisper_model = get_whisper_model_small()
|
24 |
-
|
25 |
# Save the input audio to a temporary file
|
26 |
ta.save("input_audio.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])
|
27 |
-
|
28 |
# Resample if necessary using ffmpeg
|
29 |
if audio[0] != SAMPLING_RATE:
|
30 |
resample_with_ffmpeg("input_audio.wav", "resampled_audio.wav", target_sr=SAMPLING_RATE)
|
31 |
audio_tensor, _ = ta.load("resampled_audio.wav")
|
32 |
else:
|
33 |
audio_tensor = torch.tensor(audio[1]).float()
|
34 |
-
|
35 |
# Ensure the audio is in the correct shape (mono)
|
36 |
if audio_tensor.dim() == 2:
|
37 |
audio_tensor = audio_tensor.mean(dim=0)
|
38 |
-
|
39 |
# Use Whisper's preprocessing
|
40 |
audio_tensor = whisper.pad_or_trim(audio_tensor)
|
41 |
print(f"Audio length after pad/trim: {audio_tensor.shape[-1] / SAMPLING_RATE} seconds")
|
42 |
mel = whisper.log_mel_spectrogram(audio_tensor).to(whisper_model.device)
|
43 |
-
|
44 |
# Detect language
|
45 |
_, probs = whisper_model.detect_language(mel)
|
46 |
detected_lang = max(probs, key=probs.get)
|
47 |
-
|
48 |
print(f"Audio shape: {audio_tensor.shape}")
|
49 |
print(f"Mel spectrogram shape: {mel.shape}")
|
50 |
print(f"Detected language: {detected_lang}")
|
@@ -52,73 +46,17 @@ def detect_language(audio):
|
|
52 |
|
53 |
return detected_lang
|
54 |
|
55 |
-
|
56 |
-
@spaces.GPU
|
57 |
def process_long_audio(audio, task="transcribe", language=None):
|
58 |
-
|
59 |
-
# Save the input audio to a file for ffmpeg processing
|
60 |
-
ta.save("input_audio_1.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])
|
61 |
|
62 |
-
# Resample using ffmpeg
|
63 |
-
try:
|
64 |
-
resample_with_ffmpeg("input_audio_1.wav", "resampled_audio_2.wav", target_sr=SAMPLING_RATE)
|
65 |
-
except subprocess.CalledProcessError as e:
|
66 |
-
print(f"ffmpeg failed: {e.stderr}")
|
67 |
-
raise e
|
68 |
-
|
69 |
-
waveform, _ = ta.load("resampled_audio_2.wav")
|
70 |
-
else:
|
71 |
-
waveform = torch.tensor(audio[1]).float()
|
72 |
-
|
73 |
-
# Ensure the audio is in the correct shape (mono)
|
74 |
-
if waveform.dim() == 2:
|
75 |
-
waveform = waveform.mean(dim=0)
|
76 |
-
|
77 |
-
print(f"Waveform shape after processing: {waveform.shape}")
|
78 |
-
|
79 |
-
if waveform.numel() == 0:
|
80 |
-
raise ValueError("Waveform is empty. Please check the input audio file.")
|
81 |
-
|
82 |
-
input_length = waveform.shape[0] # Since waveform is 1D, access the length with shape[0]
|
83 |
-
chunk_length = int(CHUNK_LENGTH_S * SAMPLING_RATE)
|
84 |
-
|
85 |
-
# Corrected slicing for 1D tensor
|
86 |
-
chunks = [waveform[i:i + chunk_length] for i in range(0, input_length, chunk_length)]
|
87 |
-
|
88 |
-
# Initialize the processor
|
89 |
-
processor = get_processor()
|
90 |
-
model = get_model()
|
91 |
-
device = get_device()
|
92 |
-
|
93 |
-
results = []
|
94 |
-
for chunk in chunks:
|
95 |
-
input_features = processor(chunk, sampling_rate=SAMPLING_RATE, return_tensors="pt").input_features.to(device)
|
96 |
-
|
97 |
-
with torch.no_grad():
|
98 |
-
if task == "translate":
|
99 |
-
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="translate")
|
100 |
-
generated_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
101 |
-
else:
|
102 |
-
generated_ids = model.generate(input_features)
|
103 |
-
|
104 |
-
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
105 |
-
results.extend(transcription)
|
106 |
-
|
107 |
-
# Clear GPU cache
|
108 |
-
torch.cuda.empty_cache()
|
109 |
-
|
110 |
-
return " ".join(results)
|
111 |
-
|
112 |
-
|
113 |
-
@spaces.GPU
|
114 |
def process_audio(audio):
|
115 |
if audio is None:
|
116 |
return "No file uploaded", "", ""
|
117 |
-
|
118 |
detected_lang = detect_language(audio)
|
119 |
transcription = process_long_audio(audio, task="transcribe")
|
120 |
translation = process_long_audio(audio, task="translate", language=detected_lang)
|
121 |
-
|
122 |
return detected_lang, transcription, translation
|
123 |
|
124 |
# Gradio interface
|
@@ -134,7 +72,4 @@ iface = gr.Interface(
|
|
134 |
description="Upload an audio file to detect its language, transcribe, and translate it.",
|
135 |
allow_flagging="never",
|
136 |
css=".output-textbox { font-family: 'Noto Sans Devanagari', sans-serif; font-size: 18px; }"
|
137 |
-
)
|
138 |
-
|
139 |
-
if __name__ == "__main__":
|
140 |
-
iface.launch()
|
|
|
3 |
import numpy as np
|
4 |
import torchaudio as ta
|
5 |
import gradio as gr
|
|
|
6 |
from model_utils import get_processor, get_model, get_whisper_model_small, get_device
|
7 |
from config import SAMPLING_RATE, CHUNK_LENGTH_S
|
8 |
import subprocess
|
9 |
|
|
|
|
|
|
|
|
|
10 |
def resample_with_ffmpeg(input_file, output_file, target_sr=16000):
|
11 |
command = [
|
12 |
'ffmpeg', '-i', input_file, '-ar', str(target_sr), output_file
|
13 |
]
|
14 |
subprocess.run(command, check=True)
|
15 |
|
|
|
16 |
def detect_language(audio):
|
17 |
whisper_model = get_whisper_model_small()
|
18 |
+
|
19 |
# Save the input audio to a temporary file
|
20 |
ta.save("input_audio.wav", torch.tensor(audio[1]).unsqueeze(0), audio[0])
|
21 |
+
|
22 |
# Resample if necessary using ffmpeg
|
23 |
if audio[0] != SAMPLING_RATE:
|
24 |
resample_with_ffmpeg("input_audio.wav", "resampled_audio.wav", target_sr=SAMPLING_RATE)
|
25 |
audio_tensor, _ = ta.load("resampled_audio.wav")
|
26 |
else:
|
27 |
audio_tensor = torch.tensor(audio[1]).float()
|
28 |
+
|
29 |
# Ensure the audio is in the correct shape (mono)
|
30 |
if audio_tensor.dim() == 2:
|
31 |
audio_tensor = audio_tensor.mean(dim=0)
|
32 |
+
|
33 |
# Use Whisper's preprocessing
|
34 |
audio_tensor = whisper.pad_or_trim(audio_tensor)
|
35 |
print(f"Audio length after pad/trim: {audio_tensor.shape[-1] / SAMPLING_RATE} seconds")
|
36 |
mel = whisper.log_mel_spectrogram(audio_tensor).to(whisper_model.device)
|
37 |
+
|
38 |
# Detect language
|
39 |
_, probs = whisper_model.detect_language(mel)
|
40 |
detected_lang = max(probs, key=probs.get)
|
41 |
+
|
42 |
print(f"Audio shape: {audio_tensor.shape}")
|
43 |
print(f"Mel spectrogram shape: {mel.shape}")
|
44 |
print(f"Detected language: {detected_lang}")
|
|
|
46 |
|
47 |
return detected_lang
|
48 |
|
|
|
|
|
49 |
def process_long_audio(audio, task="transcribe", language=None):
|
50 |
+
# ... (rest of the function remains the same)
|
|
|
|
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def process_audio(audio):
|
53 |
if audio is None:
|
54 |
return "No file uploaded", "", ""
|
55 |
+
|
56 |
detected_lang = detect_language(audio)
|
57 |
transcription = process_long_audio(audio, task="transcribe")
|
58 |
translation = process_long_audio(audio, task="translate", language=detected_lang)
|
59 |
+
|
60 |
return detected_lang, transcription, translation
|
61 |
|
62 |
# Gradio interface
|
|
|
72 |
description="Upload an audio file to detect its language, transcribe, and translate it.",
|
73 |
allow_flagging="never",
|
74 |
css=".output-textbox { font-family: 'Noto Sans Devanagari', sans-serif; font-size: 18px; }"
|
75 |
+
)
|
|
|
|
|
|