|
|
|
import pandas as pd |
|
import json |
|
|
|
|
|
with open('src/combined_data.json') as f: |
|
data = json.load(f) |
|
|
|
|
|
flattened_data = [] |
|
for entry in data: |
|
flattened_entry = { |
|
"model_name": entry["model_name"], |
|
"input_price": entry["pricing"]["input_price"], |
|
"output_price": entry["pricing"]["output_price"], |
|
"multimodality_image": entry["multimodality"]["image"], |
|
"multimodality_multiple_image": entry["multimodality"]["multiple_image"], |
|
"multimodality_audio": entry["multimodality"]["audio"], |
|
"multimodality_video": entry["multimodality"]["video"], |
|
"source": entry["pricing"]["source"], |
|
"license_name": entry["license"]["name"], |
|
"license_url": entry["license"]["url"], |
|
"languages": ", ".join(entry["languages"]), |
|
"release_date": entry["release_date"], |
|
"parameter_size": entry["parameters"]["size"], |
|
"estimated": entry["parameters"]["estimated"], |
|
"open_weight": entry["open_weight"], |
|
"context_size": entry["context_size"], |
|
|
|
|
|
"additional_prices_context_caching": entry["pricing"].get("additional_prices", {}).get("context_caching", None), |
|
"additional_prices_context_storage": entry["pricing"].get("additional_prices", {}).get("context_storage", None), |
|
"additional_prices_image_input": entry["pricing"].get("additional_prices", {}).get("image_input", None), |
|
"additional_prices_image_output": entry["pricing"].get("additional_prices", {}).get("image_output", None), |
|
"additional_prices_video_input": entry["pricing"].get("additional_prices", {}).get("video_input", None), |
|
"additional_prices_video_output": entry["pricing"].get("additional_prices", {}).get("video_output", None), |
|
"additional_prices_audio_input": entry["pricing"].get("additional_prices", {}).get("audio_input", None), |
|
"additional_prices_audio_output": entry["pricing"].get("additional_prices", {}).get("audio_output", None), |
|
} |
|
flattened_data.append(flattened_entry) |
|
|
|
|
|
df = pd.DataFrame(flattened_data) |
|
|
|
|
|
results_1_6_5_multimodal = pd.read_csv('src/results_1.6.5_multimodal.csv', header=None) |
|
results_1_6_5_ascii = pd.read_csv('src/results_1.6.5_ascii.csv', header=None) |
|
results_1_6 = pd.read_csv('src/results_1.6.csv', header=None) |
|
|
|
|
|
results_1_6_5_multimodal[0] = results_1_6_5_multimodal[0].str.split('-t0.0').str[0] |
|
results_1_6_5_ascii[0] = results_1_6_5_ascii[0].str.split('-t0.0').str[0] |
|
results_1_6[0] = results_1_6[0].str.split('-t0.0').str[0] |
|
|
|
|
|
|
|
clemscore_map_1_6_5_multimodal = dict(zip(results_1_6_5_multimodal[0], results_1_6_5_multimodal[1])) |
|
clemscore_map_1_6_5_ascii = dict(zip(results_1_6_5_ascii[0], results_1_6_5_ascii[1])) |
|
clemscore_map_1_6 = dict(zip(results_1_6[0], results_1_6[1])) |
|
|
|
|
|
|
|
df['clemscore_v1.6.5_multimodal'] = df['model_name'].map(clemscore_map_1_6_5_multimodal).fillna(0).astype(float) |
|
df['clemscore_v1.6.5_ascii'] = df['model_name'].map(clemscore_map_1_6_5_ascii).fillna(0).astype(float) |
|
df['clemscore_v1.6'] = df['model_name'].map(clemscore_map_1_6).fillna(0).astype(float) |
|
|
|
|
|
latency_1_6 = pd.read_csv('src/v1.6_latency.csv', header=None) |
|
latency_1_6_5_ascii = pd.read_csv('src/v1.6.5_ascii_latency.csv', header=None) |
|
latency_1_6_5_multimodal = pd.read_csv('src/v1.6.5_multimodal_latency.csv', header=None) |
|
|
|
|
|
latency_map_1_6 = dict(zip(latency_1_6[0], latency_1_6[1])) |
|
latency_map_1_6_5_ascii = dict(zip(latency_1_6_5_ascii[0], latency_1_6_5_ascii[1])) |
|
latency_map_1_6_5_multimodal = dict(zip(latency_1_6_5_multimodal[0], latency_1_6_5_multimodal[1])) |
|
|
|
|
|
df['latency_v1.6'] = df['model_name'].map(latency_map_1_6).fillna(0).astype(float) |
|
df['latency_v1.6.5_multimodal'] = df['model_name'].map(latency_map_1_6_5_multimodal).fillna(0).astype(float) |
|
df['latency_v1.6.5_ascii'] = df['model_name'].map(latency_map_1_6_5_ascii).fillna(0).astype(float) |
|
|
|
|
|
|
|
df['average_clemscore'] = df[['clemscore_v1.6.5_multimodal', 'clemscore_v1.6.5_ascii', 'clemscore_v1.6']].mean(axis=1) |
|
df['average_latency'] = df[['latency_v1.6', 'latency_v1.6.5_multimodal', 'latency_v1.6.5_ascii']].mean(axis=1) |
|
|
|
|
|
|
|
|
|
df['input_price'] = df['input_price'].replace({'\$': '', '': None}, regex=True).astype(float) |
|
df['output_price'] = df['output_price'].replace({'\$': '', '': None}, regex=True).astype(float) |
|
|
|
|
|
additional_price_columns = [ |
|
'additional_prices_context_caching', |
|
'additional_prices_context_storage', |
|
'additional_prices_image_input', |
|
'additional_prices_image_output', |
|
'additional_prices_video_input', |
|
'additional_prices_video_output', |
|
'additional_prices_audio_input', |
|
'additional_prices_audio_output' |
|
] |
|
|
|
for col in additional_price_columns: |
|
df[col] = df[col].replace({'\$': '', '': None}, regex=True).astype(float) |
|
|
|
|
|
df['context_size'] = df['context_size'].replace({'k': ''}, regex=True).astype(int) |
|
|
|
df['parameter_size'] = df['parameter_size'].replace({'B': '', '': None}, regex=True).astype(float) |
|
|
|
|
|
df = df[[ |
|
'model_name', |
|
'input_price', |
|
'output_price', |
|
'multimodality_image', |
|
'multimodality_multiple_image', |
|
'multimodality_audio', |
|
'multimodality_video', |
|
'source', |
|
'license_name', |
|
'license_url', |
|
'languages', |
|
'release_date', |
|
'open_weight', |
|
'context_size', |
|
'average_clemscore', |
|
'average_latency', |
|
'parameter_size', |
|
'estimated' |
|
]] |
|
|
|
|
|
|
|
df.to_csv('src/main_df.csv', index=False) |
|
|