# ... existing code ... import pandas as pd import json # Load the JSON data with open('src/combined_data.json') as f: data = json.load(f) # Flatten the data flattened_data = [] for entry in data: flattened_entry = { "model_name": entry["model_name"], "input_price": entry["pricing"]["input_price"], "output_price": entry["pricing"]["output_price"], "multimodality_image": entry["multimodality"]["image"], "multimodality_multiple_image": entry["multimodality"]["multiple_image"], "multimodality_audio": entry["multimodality"]["audio"], "multimodality_video": entry["multimodality"]["video"], "source": entry["pricing"]["source"], "license_name": entry["license"]["name"], "license_url": entry["license"]["url"], "languages": ", ".join(entry["languages"]), "release_date": entry["release_date"], "parameter_size": entry["parameters"]["size"], "estimated": entry["parameters"]["estimated"], "open_weight": entry["open_weight"], "context_size": entry["context_size"], # ... additional prices ... "additional_prices_context_caching": entry["pricing"].get("additional_prices", {}).get("context_caching", None), "additional_prices_context_storage": entry["pricing"].get("additional_prices", {}).get("context_storage", None), "additional_prices_image_input": entry["pricing"].get("additional_prices", {}).get("image_input", None), "additional_prices_image_output": entry["pricing"].get("additional_prices", {}).get("image_output", None), "additional_prices_video_input": entry["pricing"].get("additional_prices", {}).get("video_input", None), "additional_prices_video_output": entry["pricing"].get("additional_prices", {}).get("video_output", None), "additional_prices_audio_input": entry["pricing"].get("additional_prices", {}).get("audio_input", None), "additional_prices_audio_output": entry["pricing"].get("additional_prices", {}).get("audio_output", None), } flattened_data.append(flattened_entry) # Create a DataFrame df = pd.DataFrame(flattened_data) # Load the results CSV files results_1_6_5_multimodal = pd.read_csv('src/results_1.6.5_multimodal.csv', header=None) results_1_6_5_ascii = pd.read_csv('src/results_1.6.5_ascii.csv', header=None) results_1_6 = pd.read_csv('src/results_1.6.csv', header=None) # Split model names by '-t0.0' and use the first part results_1_6_5_multimodal[0] = results_1_6_5_multimodal[0].str.split('-t0.0').str[0] results_1_6_5_ascii[0] = results_1_6_5_ascii[0].str.split('-t0.0').str[0] results_1_6[0] = results_1_6[0].str.split('-t0.0').str[0] # Create a mapping for clemscore values clemscore_map_1_6_5_multimodal = dict(zip(results_1_6_5_multimodal[0], results_1_6_5_multimodal[1])) clemscore_map_1_6_5_ascii = dict(zip(results_1_6_5_ascii[0], results_1_6_5_ascii[1])) clemscore_map_1_6 = dict(zip(results_1_6[0], results_1_6[1])) # Add clemscore columns to the main DataFrame df['clemscore_v1.6.5_multimodal'] = df['model_name'].map(clemscore_map_1_6_5_multimodal).fillna(0).astype(float) df['clemscore_v1.6.5_ascii'] = df['model_name'].map(clemscore_map_1_6_5_ascii).fillna(0).astype(float) df['clemscore_v1.6'] = df['model_name'].map(clemscore_map_1_6).fillna(0).astype(float) # Load the latency CSV files latency_1_6 = pd.read_csv('src/v1.6_latency.csv', header=None) latency_1_6_5_ascii = pd.read_csv('src/v1.6.5_ascii_latency.csv', header=None) latency_1_6_5_multimodal = pd.read_csv('src/v1.6.5_multimodal_latency.csv', header=None) # Create a mapping for latency values latency_map_1_6 = dict(zip(latency_1_6[0], latency_1_6[1])) latency_map_1_6_5_ascii = dict(zip(latency_1_6_5_ascii[0], latency_1_6_5_ascii[1])) latency_map_1_6_5_multimodal = dict(zip(latency_1_6_5_multimodal[0], latency_1_6_5_multimodal[1])) # Add latency columns to the main DataFrame df['latency_v1.6'] = df['model_name'].map(latency_map_1_6).fillna(0).astype(float) df['latency_v1.6.5_multimodal'] = df['model_name'].map(latency_map_1_6_5_multimodal).fillna(0).astype(float) df['latency_v1.6.5_ascii'] = df['model_name'].map(latency_map_1_6_5_ascii).fillna(0).astype(float) # Calculate average latency and clemscore df['average_clemscore'] = df[['clemscore_v1.6.5_multimodal', 'clemscore_v1.6.5_ascii', 'clemscore_v1.6']].mean(axis=1) df['average_latency'] = df[['latency_v1.6', 'latency_v1.6.5_multimodal', 'latency_v1.6.5_ascii']].mean(axis=1) # More clean up # Clean and convert prices to float df['input_price'] = df['input_price'].replace({'\$': '', '': None}, regex=True).astype(float) df['output_price'] = df['output_price'].replace({'\$': '', '': None}, regex=True).astype(float) # Clean and convert additional prices to float additional_price_columns = [ 'additional_prices_context_caching', 'additional_prices_context_storage', 'additional_prices_image_input', 'additional_prices_image_output', 'additional_prices_video_input', 'additional_prices_video_output', 'additional_prices_audio_input', 'additional_prices_audio_output' ] for col in additional_price_columns: df[col] = df[col].replace({'\$': '', '': None}, regex=True).astype(float) # Clean and convert context to integer df['context_size'] = df['context_size'].replace({'k': ''}, regex=True).astype(int) df['parameter_size'] = df['parameter_size'].replace({'B': '', '': None}, regex=True).astype(float) # Keep only the specified columns df = df[[ 'model_name', 'input_price', 'output_price', 'multimodality_image', 'multimodality_multiple_image', 'multimodality_audio', 'multimodality_video', 'source', 'license_name', 'license_url', 'languages', 'release_date', 'open_weight', 'context_size', 'average_clemscore', 'average_latency', 'parameter_size', 'estimated' ]] # Save to CSV df.to_csv('src/main_df.csv', index=False)