Spaces:
Sleeping
Sleeping
import os | |
from huggingface_hub import login | |
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer | |
from peft import PeftModel, PeftConfig | |
token = os.environ.get("token") | |
login(token) | |
print("login is succesful") | |
max_length=512 | |
MODEL_NAME = "google/flan-t5-base" | |
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, token=token) | |
config = PeftConfig.from_pretrained("Orcawise/results") | |
base_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base") | |
model = PeftModel.from_pretrained(base_model, "Orcawise/results") | |
#gr.Interface.from_pipeline(pipe).launch() | |
def generate_text(prompt, max_length=512): | |
"""Generates text using the PEFT model. | |
Args: | |
prompt (str): The user-provided prompt to start the generation. | |
Returns: | |
str: The generated text. | |
""" | |
# Preprocess the prompt | |
# inputs = tokenizer(prompt, return_tensors="pt").to("cuda") | |
inputs = tokenizer(prompt, return_tensors="pt") | |
# Generate text using beam search | |
outputs = model.generate( | |
input_ids = inputs["input_ids"], | |
max_length=max_length, | |
num_beams=1 | |
) | |
# Decode the generated tokens | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print("show the generated text", generated_text) | |
return generated_text | |
############# | |
custom_css=""" | |
.message.pending { | |
background: #A8C4D6; | |
} | |
/* Response message */ | |
.message.bot.svelte-1s78gfg.message-bubble-border { | |
/* background: white; */ | |
border-color: #266B99 | |
} | |
/* User message */ | |
.message.user.svelte-1s78gfg.message-bubble-border{ | |
background: #9DDDF9; | |
border-color: #9DDDF9 | |
} | |
/* For both user and response message as per the document */ | |
span.md.svelte-8tpqd2.chatbot.prose p { | |
color: #266B99; | |
} | |
/* Chatbot comtainer */ | |
.gradio-container{ | |
/* background: #84D5F7 */ | |
} | |
/* RED (Hex: #DB1616) for action buttons and links only */ | |
.clear-btn { | |
background: #DB1616; | |
color: white; | |
} | |
/* #84D5F7 - Primary colours are set to be used for all sorts */ | |
.submit-btn { | |
background: #266B99; | |
color: white; | |
} | |
""" | |
### working correctly but the welcoming message isnt rendering | |
with gr.Blocks(css=custom_css) as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox(placeholder="Ask your question...") # Add placeholder text | |
submit_button = gr.Button("Submit", elem_classes="submit-btn") | |
clear = gr.Button("Clear", elem_classes="clear-btn") | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def bot(history): | |
history[-1][1] = "" # Update the last bot message (welcome message or response) | |
if len(history) < 0: # Check if it's the first interaction | |
bot_message = "Hi there! How can I help you today?" | |
history.append([None, bot_message]) # Add welcome message to history | |
for character in bot_message: | |
history[-1][1] += character | |
yield history # Yield the updated history character by character | |
else: | |
previous_message = history[-1][0] # Access the previous user message | |
bot_message = generate_text(previous_message) # Generate response based on previous message | |
for character in bot_message: | |
history[-1][1] += character | |
yield history # Yield the updated history character by character | |
# Connect submit button to user and then bot functions | |
submit_button.click(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
# Trigger user function on Enter key press (same chain as submit button) | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.launch() |