Spaces:
Sleeping
Sleeping
updated app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,123 @@
|
|
| 1 |
-
import
|
| 2 |
-
from huggingface_hub import
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
""
|
| 5 |
-
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
"""
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from huggingface_hub import login
|
| 3 |
+
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
|
| 4 |
+
from peft import PeftModel, PeftConfig
|
| 5 |
|
| 6 |
+
token = os.environ.get("token")
|
| 7 |
+
login(token)
|
| 8 |
+
print("login is succesful")
|
| 9 |
+
max_length=512
|
| 10 |
|
| 11 |
+
MODEL_NAME = "google/flan-t5-base"
|
| 12 |
+
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, token=token)
|
| 13 |
+
config = PeftConfig.from_pretrained("Orcawise/results")
|
| 14 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
|
| 15 |
+
model = PeftModel.from_pretrained(base_model, "Orcawise/results")
|
| 16 |
|
| 17 |
+
#gr.Interface.from_pipeline(pipe).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
def generate_text(prompt, max_length=512):
|
| 20 |
+
"""Generates text using the PEFT model.
|
| 21 |
+
Args:
|
| 22 |
+
prompt (str): The user-provided prompt to start the generation.
|
| 23 |
+
Returns:
|
| 24 |
+
str: The generated text.
|
| 25 |
+
"""
|
| 26 |
|
|
|
|
| 27 |
|
| 28 |
+
# Preprocess the prompt
|
| 29 |
+
# inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 30 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 31 |
|
| 32 |
+
# Generate text using beam search
|
| 33 |
+
outputs = model.generate(
|
| 34 |
+
input_ids = inputs["input_ids"],
|
| 35 |
+
max_length=max_length,
|
| 36 |
+
num_beams=1
|
| 37 |
+
|
| 38 |
+
)
|
|
|
|
| 39 |
|
| 40 |
+
# Decode the generated tokens
|
| 41 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 42 |
+
print("show the generated text", generated_text)
|
| 43 |
+
return generated_text
|
| 44 |
|
| 45 |
+
#############
|
| 46 |
+
custom_css="""
|
| 47 |
+
.message.pending {
|
| 48 |
+
background: #A8C4D6;
|
| 49 |
+
}
|
| 50 |
+
/* Response message */
|
| 51 |
+
.message.bot.svelte-1s78gfg.message-bubble-border {
|
| 52 |
+
/* background: white; */
|
| 53 |
+
border-color: #266B99
|
| 54 |
+
}
|
| 55 |
+
/* User message */
|
| 56 |
+
.message.user.svelte-1s78gfg.message-bubble-border{
|
| 57 |
+
background: #9DDDF9;
|
| 58 |
+
border-color: #9DDDF9
|
| 59 |
+
|
| 60 |
+
}
|
| 61 |
+
/* For both user and response message as per the document */
|
| 62 |
+
span.md.svelte-8tpqd2.chatbot.prose p {
|
| 63 |
+
color: #266B99;
|
| 64 |
+
}
|
| 65 |
+
/* Chatbot comtainer */
|
| 66 |
+
.gradio-container{
|
| 67 |
+
/* background: #84D5F7 */
|
| 68 |
+
}
|
| 69 |
+
/* RED (Hex: #DB1616) for action buttons and links only */
|
| 70 |
+
.clear-btn {
|
| 71 |
+
background: #DB1616;
|
| 72 |
+
color: white;
|
| 73 |
+
}
|
| 74 |
+
/* #84D5F7 - Primary colours are set to be used for all sorts */
|
| 75 |
+
.submit-btn {
|
| 76 |
+
background: #266B99;
|
| 77 |
+
color: white;
|
| 78 |
+
}
|
| 79 |
"""
|
| 80 |
+
|
| 81 |
+
### working correctly but the welcoming message isnt rendering
|
| 82 |
+
with gr.Blocks(css=custom_css) as demo:
|
| 83 |
+
chatbot = gr.Chatbot()
|
| 84 |
+
msg = gr.Textbox(placeholder="Ask your question...") # Add placeholder text
|
| 85 |
+
submit_button = gr.Button("Submit", elem_classes="submit-btn")
|
| 86 |
+
clear = gr.Button("Clear", elem_classes="clear-btn")
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def user(user_message, history):
|
| 90 |
+
return "", history + [[user_message, None]]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def bot(history):
|
| 94 |
+
history[-1][1] = "" # Update the last bot message (welcome message or response)
|
| 95 |
+
if len(history) < 0: # Check if it's the first interaction
|
| 96 |
+
bot_message = "Hi there! How can I help you today?"
|
| 97 |
+
history.append([None, bot_message]) # Add welcome message to history
|
| 98 |
+
for character in bot_message:
|
| 99 |
+
history[-1][1] += character
|
| 100 |
+
yield history # Yield the updated history character by character
|
| 101 |
+
|
| 102 |
+
else:
|
| 103 |
+
previous_message = history[-1][0] # Access the previous user message
|
| 104 |
+
bot_message = generate_text(previous_message) # Generate response based on previous message
|
| 105 |
+
for character in bot_message:
|
| 106 |
+
history[-1][1] += character
|
| 107 |
+
yield history # Yield the updated history character by character
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
# Connect submit button to user and then bot functions
|
| 112 |
+
submit_button.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 113 |
+
bot, chatbot, chatbot
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Trigger user function on Enter key press (same chain as submit button)
|
| 117 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 118 |
+
bot, chatbot, chatbot
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 122 |
+
|
| 123 |
+
demo.launch()
|