File size: 4,221 Bytes
b4ceb72
0c80716
b4ceb72
 
 
7613467
c3599b6
b4ceb72
85bca36
 
 
 
 
7613467
c3599b6
b4ceb72
85bca36
23a30f1
85bca36
23a30f1
7613467
c3599b6
dea4866
b4ceb72
 
c3599b6
 
 
 
 
b4ceb72
 
7613467
c3599b6
 
b4ceb72
 
 
 
 
c3599b6
b4ceb72
 
c3599b6
b4ceb72
c3599b6
b4ceb72
 
 
c3599b6
b4ceb72
c3599b6
 
 
 
b4ceb72
 
 
c3599b6
 
b4ceb72
c3599b6
b4ceb72
c3599b6
 
b4ceb72
d99d01c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc0224a
 
 
 
 
7613467
b4ceb72
c3599b6
b4ceb72
c3599b6
dc0224a
c3599b6
 
 
 
 
 
85bca36
c3599b6
 
 
85bca36
c3599b6
 
 
 
 
 
 
 
 
55ece6d
e672180
55ece6d
 
c3599b6
55ece6d
 
c3599b6
55ece6d
c3599b6
dc0224a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import gradio as gr
from huggingface_hub import login
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
from peft import PeftModel, PeftConfig

# Hugging Face login
token = os.environ.get("token")
if token:
    login(token)
    print("Login is successful")
else:
    print("Token not found. Please set your token in the environment variables.")

# Model and tokenizer setup
MODEL_NAME = "google/flan-t5-base"
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, use_auth_token=token)
config = PeftConfig.from_pretrained("Komal-patra/results")
base_model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model = PeftModel.from_pretrained(base_model, "Komal-patra/results")

# Text generation function
def generate_text(prompt, max_length=150):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(
        input_ids=inputs["input_ids"],
        max_length=max_length,
        num_beams=1,
        repetition_penalty=2.2
    )
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text

# Custom CSS for the UI
custom_css = """
.message.pending {
    background: #A8C4D6;
}
/* Response message */
.message.bot.svelte-1s78gfg.message-bubble-border {
    border-color: #266B99;
}
/* User message */
.message.user.svelte-1s78gfg.message-bubble-border {
    background: #9DDDF9;
    border-color: #9DDDF9;
}   
/* For both user and response message as per the document */
span.md.svelte-8tpqd2.chatbot.prose p {
    color: #266B99;
}
/* Chatbot container */
.gradio-container {
    background: #1c1c1c; /* Dark background */
    color: white; /* Light text color */
}
/* RED (Hex: #DB1616) for action buttons and links only */
.clear-btn {
    background: #DB1616;
    color: white;
}
/* Primary colors are set to be used for all sorts */
.submit-btn {
    background: #266B99;
    color: white;
}
/* Add icons to messages */
.message.user.svelte-1s78gfg {
    display: flex;
    align-items: center;
}
.message.user.svelte-1s78gfg:before {
    content: url('file=Komal-patra/EU_AI_ACT/user icon.jpeg');
    margin-right: 8px;
}
.message.bot.svelte-1s78gfg {
    display: flex;
    align-items: center;
}
.message.bot.svelte-1s78gfg:before {
    content: url('file=Komal-patra/EU_AI_ACT/orcawise image.png');
    margin-right: 8px;
}
/* Enable scrolling for the chatbot messages */
.chatbot .messages {
    max-height: 500px;  /* Adjust as needed */
    overflow-y: auto;
}
"""

# Gradio interface setup
with gr.Blocks(css=custom_css) as demo:
    with gr.Row():
        with gr.Column(scale=3, offset=1):  # Adjust column to take full width minus some padding
            gr.Markdown("<h1>Ask a question about the EU AI Act</h1>")
            chatbot = gr.Chatbot()
            msg = gr.Textbox(placeholder="Ask your question...", show_label=False)  # Add placeholder text
            submit_button = gr.Button("Submit", elem_classes="submit-btn")
            clear = gr.Button("Clear", elem_classes="clear-btn")

            # Function to handle user input
            def user(user_message, history):
                return "", history + [[user_message, None]]

            # Function to handle bot response
            def bot(history):
                if len(history) == 1:  # Check if it's the first interaction
                    bot_message = "Hi there! How can I help you today?"
                    history[-1][1] = bot_message  # Add welcome message to history
                else:
                    history[-1][1] = ""  # Clear the last bot message
                    previous_message = history[-1][0]  # Access the previous user message
                    bot_message = generate_text(previous_message)  # Generate response based on previous message
                    history[-1][1] = bot_message  # Update the last bot message
                return history

            submit_button.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
                bot, chatbot, chatbot
            )
            msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
                bot, chatbot, chatbot
            )
            clear.click(lambda: None, None, chatbot, queue=False)

demo.launch()