File size: 3,738 Bytes
b4ceb72
0c80716
b4ceb72
 
 
7613467
c3599b6
b4ceb72
667ab64
 
 
7613467
c3599b6
b4ceb72
85bca36
23a30f1
85bca36
23a30f1
7613467
c3599b6
f95e467
b4ceb72
 
c3599b6
 
 
 
 
b4ceb72
 
7613467
c3599b6
69b124f
0305332
 
c96430c
0305332
b4ceb72
0305332
c96430c
0305332
b4ceb72
0305332
c96430c
 
0305332
b4ceb72
0305332
c3599b6
0305332
c3599b6
0305332
c3599b6
 
0305332
 
 
 
 
b4ceb72
0305332
c3599b6
 
0305332
c3599b6
0305332
c3599b6
 
0305332
d99d01c
0305332
d99d01c
 
0305332
 
d99d01c
 
0305332
 
d99d01c
 
0305332
 
d99d01c
 
0305332
dc0224a
b9acf04
dc0224a
 
0305332
b9acf04
 
 
 
 
 
7613467
b4ceb72
c3599b6
b4ceb72
29f9dea
 
 
 
 
c3599b6
29f9dea
 
b9acf04
 
c3599b6
b9acf04
 
e672180
b9acf04
 
c3599b6
b9acf04
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import gradio as gr
from huggingface_hub import login
from transformers import AutoModelForSeq2SeqLM, T5Tokenizer
from peft import PeftModel, PeftConfig

# Hugging Face login
token = os.environ.get("token")
login(token)
print("login is succesful")
max_length=512

# Model and tokenizer setup
MODEL_NAME = "google/flan-t5-base"
tokenizer = T5Tokenizer.from_pretrained(MODEL_NAME, use_auth_token=token)
config = PeftConfig.from_pretrained("Komal-patra/results")
base_model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
model = PeftModel.from_pretrained(base_model, "Komal-patra/results")

# Text generation function
def generate_text(prompt, max_length=512):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(
        input_ids=inputs["input_ids"],
        max_length=max_length,
        num_beams=1,
        repetition_penalty=2.2
    )
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text

# Custom CSS for the UI
background_image_path = 'https://www.shlegal-technology.com/sites/default/files/insight/ExploringTheLegislativeBackgroundBANNER.jpg'
custom_css = f"""
.message.pending {{
    background: #A8C4D6;
}}
/* Response message */
.message.bot.svelte-1s78gfg.message-bubble-border {{
    border-color: #266B99;
}}
/* User message */
.message.user.svelte-1s78gfg.message-bubble-border {{
    background: #9DDDF9;
    border-color: #9DDDF9;
}}   
/* For both user and response message as per the document */
span.md.svelte-8tpqd2.chatbot.prose p {{
    color: #266B99;
}}
/* Chatbot container */
.gradio-container {{
    background: #1c1c1c; /* Dark background */
    color: white; /* Light text color */
    background-image: url('{background_image_path}'); /* Add background image */
    background-size: cover; /* Cover the entire container */
    background-position: center; /* Center the image */
    background-repeat: no-repeat; /* Do not repeat the image */
}}
/* RED (Hex: #DB1616) for action buttons and links only */
.clear-btn {{
    background: #DB1616;
    color: white;
}}
/* Primary colors are set to be used for all sorts */
.submit-btn {{
    background: #266B99;
    color: white;
}}
/* Add icons to messages */
.message.user.svelte-1s78gfg {{
    display: flex;
    align-items: center;
}}
.message.user.svelte-1s78gfg:before {{
    content: url('file=Komal-patra/EU_AI_ACT/user icon.jpeg');
    margin-right: 8px;
}}
.message.bot.svelte-1s78gfg {{
    display: flex;
    align-items: center;
}}
.message.bot.svelte-1s78gfg:before {{
    content: url('file=Komal-patra/EU_AI_ACT/orcawise image.png');
    margin-right: 8px;
}}
/* Enable scrolling for the chatbot messages */
.chatbot.messages {{
    max-height: 500px;  /* Adjust as needed */
    overflow-y: auto;
}}
/* Add transparency to chatbox */
.chatbot {{
    background-color: rgba(255, 255, 255, 0.5); /* 50% transparent white background */
    border: none;
    box-shadow: none;
}}
"""

# Gradio interface setup
with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("<h1>Ask a question about the EU AI Act</h1>")
    chatbot = gr.Chatbot()
    msg = gr.Textbox(placeholder="Ask your question...", show_label=False)  # Add placeholder text
    submit_button = gr.Button("Submit", elem_classes="submit-btn")
    clear = gr.Button("Clear", elem_classes="clear-btn")

    # Function to handle user input
    def user(user_message, history):
        response = generate_text(user_message)
        return [user_message, response]

    # Event listener for submit button
    submit_button.click(fn=user, inputs=[msg, chatbot], outputs=[chatbot, msg])

    # Event listener for clear button
    clear.click(fn=lambda: "", inputs=None, outputs=msg)

demo.launch()